


# White Oak Regeneration Spatial Analysis – Final Report

Prepared in support of the White Oak Inititative Conservation Plan

Lance A. Vickers, PhD and Benjamin O. Knapp, PhD University of Missouri, School of Natural Resources

# CONTENTS

| Executive Summary2                                                                            |
|-----------------------------------------------------------------------------------------------|
| Tasks2                                                                                        |
| Highlights3                                                                                   |
| Methods4                                                                                      |
| General Approach4                                                                             |
| Data5                                                                                         |
| Task-specific methods7                                                                        |
| Task 1: Contemporary range and prevalence7                                                    |
| Task 2: Age/Maturity distribution, regeneration eligible areas9                               |
| Task 3: Summarize canopy, sapling, and seedling population of regeneration eligible areas10   |
| Task 4: Compare mid- and understory population to canopy of regeneration eligible areas       |
| Task 5: Highlight areas of regeneration concern11                                             |
| Task 6: Investigate effects of plausibly influential factors         11                       |
| Results                                                                                       |
| Task 1: Contemporary range and prevalence13                                                   |
| Task 2: Age/Maturity distribution, regeneration eligible areas17                              |
| Task 3: Summarize canopy, sapling, and seedling populations of regeneration eligible areas 21 |
| Task 4: Compare mid- and understory population to canopy of regeneration eligible areas39     |
| Task 5: Highlight areas of regeneration concern                                               |
| Task 6: Investigate effects of plausibly influential factors                                  |
| Site productivity54                                                                           |
| Overstory density/composition                                                                 |
| Deer browsing61                                                                               |
| Land ownership63                                                                              |
| Other disturbances                                                                            |
| Invasive species                                                                              |
| References                                                                                    |

Cover Photo: 'White oak reaching for the pines'; by: Lance A. Vickers Crossett Experimental Forest, Arkansas Alluvial Plains Ecological Section [234E]

| Table 1. White and upland oak forestland area by ecological section                  | 15 |
|--------------------------------------------------------------------------------------|----|
| Table 2. White and upland oak regeneration eligible forestland by ecological section | 19 |
| Table 3. Abundance and relative abundance by canopy position and ecological section  | 22 |
| Table 4. Gingrich stocking by canopy position, species, and ecological section       | 27 |
| Table 5. Reproduction abundance by type, species, and ecological section             | 37 |
| Table 6. Area of reproduction absence by type, species, and ecological section       | 52 |
| Table 7. White and upland oak seedling abundance by forest type                      | 59 |
| Table 8. Prominent invasive plant species across by attribute and ecological section | 67 |

| Figure 1. White oak (Quercus alba) range and prevalence.                                         | 2  |
|--------------------------------------------------------------------------------------------------|----|
| Figure 2. White and upland oak plot distribution                                                 | 5  |
| Figure 3. FIA plot design.                                                                       | 6  |
| Figure 4. Ecological sections                                                                    | 8  |
| Figure 5. Upland oak structrual stage-age relationship                                           | 9  |
| Figure 6. White and upland oak forestland by ecological section                                  | 13 |
| Figure 7. White and upland oak forestland proportion by ecological section                       | 14 |
| Figure 8. Upland oak forestland area by structural stage and ecological section                  | 17 |
| Figure 9. White and upland oak forestland regeneration eligible proportion by ecological section |    |
| Figure 10. White and upland oak forestland regeneration eligible area                            |    |
| Figure 11. All species total Gingrich stocking by ecological section                             | 21 |
| Figure 12. White oak total and upper canopy Gingrich stocking by ecological section              | 24 |
| Figure 13. White oak total and upper canopy Gingrich stocking, local scale                       | 25 |
| Figure 14. Upland oak total and upper canopy Gingrich stocking by ecological section             | 25 |
| Figure 15. Upland oak total and upper canopy Gingrich stocking, local scale                      | 26 |
| Figure 16. White oak sapling abundance and relative abundance by ecological section              | 29 |
| Figure 17. Upland oak sapling abundance and relative abundance by ecological section             | 29 |
| Figure 18. White oak seedling abundance by ecological section                                    |    |
| Figure 19. White oak seedling relative abundance by ecological section                           | 31 |
| Figure 20. Upland oak seedling abundance by ecological section                                   | 32 |
| Figure 21. Upland oak seedling relative abundance by ecological section                          |    |
| Figure 22. White oak sapling and seedling abundance, local scale                                 |    |
| Figure 23. Upland oak sapling and seedling abundance, local scale                                |    |
| Figure 24. Upland oak sprouting probability estimates by species and diameter                    | 35 |
| Figure 25. White and upland oak potential sprout abundance by ecological section                 |    |

| Figure 26. White and upland oak potential sprout abundance, local scale                  |    |
|------------------------------------------------------------------------------------------|----|
| Figure 27. White oak abundance by diameter class and ecological section                  |    |
| Figure 28. Upland oak abundance by diameter class and ecological section                 | 40 |
| Figure 29. White oak relative abundance by diameter class and ecological section         | 41 |
| Figure 30. Upland oak relative abundance by diameter class and ecological section        | 42 |
| Figure 31. White oak abundance by canopy position and ecological section                 | 43 |
| Figure 32. Upland oak abundance by canopy position and ecological section                | 44 |
| Figure 33. White oak relative abundance by canopy position and ecological section        | 45 |
| Figure 34. Upland oak relative abundance by canopy position and ecological section       | 46 |
| Figure 35. White oak upper canopy and seedling abundance by ecological section           | 47 |
| Figure 36. White oak upper canopy and seedling relative abundance by ecological section  | 47 |
| Figure 37. Upland oak upper canopy and seedling abundance by ecological section          | 48 |
| Figure 38. Upland oak upper canopy and seedling relative abundance by ecological section | 48 |
| Figure 39. White oak reproduction absence by type and ecological section                 | 49 |
| Figure 40. White oak reproduction presence/absence by type, local scale                  | 50 |
| Figure 41. Upland oak reproduction absence by type and ecological section                | 51 |
| Figure 42. Upland oak reproduction presence/absence by type, local scale                 | 51 |
| Figure 43. Upland oak seedling abundance by species and site productivity class          | 54 |
| Figure 44. Upland oak seedling abundance by species and physiogrpahic class              | 55 |
| Figure 45. Upland oak seedling abundance by species and stocking class                   | 56 |
| Figure 46. White oak seedling abundance by forest type                                   | 57 |
| Figure 47. Upland oak seedling abundance by forest type                                  |    |
| Figure 48. Deer density class estimates for the eastern US.                              | 61 |
| Figure 49. Upland oak seedling abundance by species and deer density class               | 62 |
| Figure 50. Upland oak seedling abundance by species and land ownership class             | 63 |
| Figure 51. Upland oak seedling abundance by species and disturbance type                 | 64 |
| Figure 52. Invasive plant species presence by ecological section and local scale         | 65 |
| Figure 53. Prominent invasive plant species across all ecological sections by attribute  | 66 |

# EXECUTIVE SUMMARY

We collate and report analyses of USDA Forest Service Forest Inventory and Analysis data to assist the White Oak Initiative identify priority areas for conservation, restoration, and protection of white and upland oaks across twenty states that cover upland and white oak habitat. The twenty-state region includes: Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, Ohio, Pennsylvania, Missouri, Kentucky, West Virginia, Maryland, Virginia, Arkansas, Tennessee, North Carolina, Alabama, Georgia, Mississippi, and South Carolina. We also included data and analyses from thirteen additional states: Maine, New Hampshire, Vermont, New York, New Jersey, Massachusetts, Connecticut, Delaware, Rhode Island, Florida, Louisiana, Oklahoma, and Kansas. Combined, the 33-state region nearly spans the North American white oak range (Figure 1).

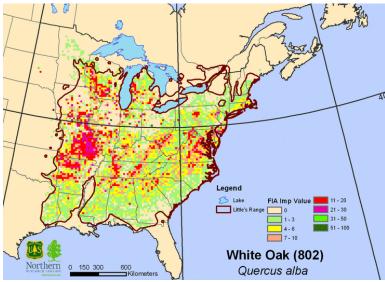



Figure 1. White oak (Quercus alba) range and prevalence<sup>1</sup>.

The data used represent forest conditions circa 2017, the most recent inventory data available across the entire region. Most attributes are summarized by ecological sections, which are well-documented geographical delineations based on physical and biological components, are generally smaller and more homogenous than (most) states, and are but one tier in a comprehensive, hierarchical ecological classification system often used for spatial analysis. Consequently, the maps, figures, and tables provided should assist identification of geographical areas that may benefit from on-the-ground white or upland oak management to enhance wildlife habitat, conservation objectives and support forest products industries. In several cases, visualizations at scales finer than an ecological section are provided to offer further geographic insight, but data summaries are not provided for the finer, local scale.

<sup>&</sup>lt;sup>1</sup> From Prasad et al. (2007)

#### TASKS

The following six tasks were identified by all parties to guide the analysis:

- 1. Analysis of contemporary upland and white oak range and prevalence using FIA data, focusing on 20 WOI States listed above
- 2. Within (1), conduct regional analysis of:
  - a. Current upland and white oak forest age/maturity distribution
  - b. Identify plausible regeneration-eligible areas based on age/maturity in 2a
- 3. Within regeneration eligible areas (2b), analysis of current forest demographics including:
  - a. Prevalence of upland and white oaks in the overstory
  - b. Prevalence of upland and white oak in the midstory (saplings)
  - c. Prevalence of upland and white oak in the understory (seedlings)
- 4. Evaluate prospects of successful regeneration and recruitment for a suite of objectives by:
  - a. Comparing current midstory and understory conditions (3b and 3c) with overstory (3a)
  - b. Comparing current midstory and understory conditions (3b and 3c) with WOI defined targets
- 5. Based on 4, analysis highlighting:
  - a. Areas where regeneration and recruitment success are unlikely,
  - b. Areas where success is uncertain and/or strongly management dependent,
  - c. Areas where success is plausible
- 6. Analysis of factors that influence regeneration success, potentially including:
  - a. Site productivity
  - b. Overstory density/composition
  - c. Deer browsing
  - d. Land ownership
  - e. Other disturbances types and/or frequencies
  - f. (invasive plant species)

The following nine points were chosen as perhaps the most relevant highlights from the results that address the six aforementioned tasks. The remainder of the document details the methodology used to complete those tasks along with associated results and observations.

# HIGHLIGHTS

- White oak is widespread, with a range > 104 million forestland acres, but reaches its highest concentrations (% acres present) in the Boston Mountains (M223A; 74.5%), Northern Cumberland Plateau (221H; 72.7%), Ozark Highlands (223A; 69.7%), and Central Appalachian Piedmont (231I; 66.5%) ecological sections.
- White oak forestland is largely mature, about 75% of all white oak acres can be classified ≥ 'mature,' and that proportion is almost 60% or greater in each of the 59 ecological sections analyzed.
- In mature stands, white oaks become increasingly prevalent as large trees, while seedling abundance
  is variable and saplings are scarce. In many places, the next generation of white oak in mature stands
  is <u>not</u> clearly established. An estimated 60% of mature white oak acres have <u>no</u> white oak seedlings
  present and about 87% have <u>no</u> white oak saplings present.
- No section is immune to regeneration concerns. For example, while the Ozark Highlands (223A) has
  the 2<sup>nd</sup> lowest proportion of mature white oak acres without seedlings ('only' 37%), saplings are
  overwhelmingly absent (81% of acres). This highlights that regeneration concerns can be different in
  kind, those where bottlenecks appear in seedling establishment vs those where bottlenecks appear
  during canopy recruitment.
- Limited canopy recruitment of saplings is a concern across the range, white oak saplings were absent on no fewer than 72% of mature white oak acres in any ecological section.
- Among the larger ecological sections (≥ 1 million mature acres), white oak establishment concerns were *relatively* higher (≥ 75% seedling-less acres) in the Driftless and Escarpment (222L), Gulf Coastal Plains and Flatwoods (232B), and Central Appalachians (M221A, B, D). In contrast, establishment concerns were *relatively* lower (≤ 50% seedling-less acres) in the Ozark Highlands (223A), Shawnee Hills (223D), Central Appalachian Piedmont (231I), Ouachita Mountains (M231A), and Northern Lower Peninsula (212H).
- While white oak sprouting can make up some deficit in seedlings and sapling populations in a regeneration event, not all stems will sprout. Moreover, saplings and small trees are more reliable sprouters than large-diameter trees. Therefore, sole reliance on stump sprouting as the regeneration source will result in a net loss of white oak in the next generation.
- Many of the potentially influential factors examined appear to contribute at least some to the
  variability in seedling abundance, but locale, physiography, forest type, and disturbance history
  appear to be among the more important variables. Generally, many of these factors often work in
  concert and collectively point to areas where site productivity is relatively lower and disturbance is
  relatively greater or more frequent as more likely to favor white oak seedling abundance. For example,
  pine-heavy canopies on drier sites.
- Even within an ecological section, seedling and sapling presence and abundance is often spatially variable, suggesting that stand-level drivers and adaptive silviculture will be important determinants of stand development and regeneration outcomes.

# METHODS

#### GENERAL APPROACH

For this report, '<u>upland oaks'</u> include white (*Quercus alba*), black (*Q. velutina*), northern red (*Q. rubra*), southern red (*Q. falcata*), scarlet (*Q. coccinea*), chestnut (*Q. montana*), chinkapin (*Q. muehlenbergii*), and post (*Q. stellata*) oaks. Usually, we present results for both white oak alone and all upland oaks combined. Note: upland oak results include white oak.

All analyses presented herein are based on publicly available forest inventory data obtained from the USDA Forest Service Forest Inventory and Analysis (FIA) program (USDA Forest Service 2020). More detail on FIA sampling and procedures follows in the 'data' section. Population and other attribute estimates were derived using the rFIA package (Stanke & Finley 2020) for R software (R Core Team 2019). All geospatial manipulations were conducted using the raster and sf packages (Hijmans 2020, Pebesma 2018) in R software.

Our analyses were conducted at one of two spatial scales: Ecological section or local. <u>Ecological sections</u> are well-documented geographical delineations based on evaluation and integration of physical and biological components including climate, physiography, lithology, soils, and potential natural communities (McNab et al., 2007). Ecological sections are but one tier in a comprehensive, hierarchical ecological classification system often used for spatial analysis, and are identified in the FIA database for each plot. Sections are generally smaller and more homogenous than (most) states. All visual depictions of ecological section boundaries herein were derived from public shapefiles (<u>https://data.fs.usda.gov/geodata/edw</u>) that were masked to only show land where canopy cover ≥ 10% in 2016 according to the National Land Cover Database (NLCD, <u>https://data.fs.usda.gov/geodata/rastergateway</u>).

Most <u>local scale</u> analyses were computed by collocating relevant FIA plots within cells of a grid imposed on lands where canopy cover ≥ 10% according to NLCD. The grid resolution was usually 9842 ft. (3000 meters) resolution grid and represents approximately 12,000 acres, which generally includes about 2 FIA plots under normal FIA sampling intensity. An exception was invasive species analysis which used a sparser grid resolution (approximately 48,000 acres) due to sampling differences discussed later. We used publicly available plot locations from the FIA database to collocate plots within an appropriate grid cell. We note that because of local scale sample size limitations, we include only visualizations for insights into potential trends that may occur at finer scales, not summary data.

# DATA

We initially obtained forest inventory data for all US states with land area east of the 100<sup>th</sup> meridian west (except Texas, excluded for database inconsistencies) for 2017. This is an area slightly more extensive than the recognized native white oak range in the US to allow for possible range expansion. Upon preliminary data inspection, no major expansions were obvious and white oak was not observed in the states of North Dakota, South Dakota, or Nebraska (Figure 2).

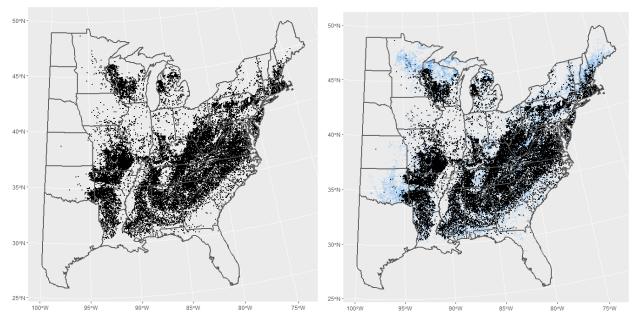



Figure 2. White and upland oak plot distribution, eastern US forestland, 2017. FIA plots with white oak present [L, black], and white or other upland oak present [R, blue].

At the time of data acquisition complete datasets were available for 2017 across all 33 states in the study region (USDA Forest Service 2020). The FIA national inventory is a uniform grid of sample locations, each representing approximately 6000 acres, though some states and ownerships have sampled at higher intensities. Inventories are conducted on <u>'forestland'</u>, which is defined as areas of at least 1 acre and no less than 120 ft wide with  $\geq$  10% canopy cover by trees of any size, including land that formerly had such tree cover and that will be naturally or artificially regenerated (see Bechtold and Patterson 2005). Tree-covered areas in agricultural production settings, such as fruit orchards, or tree covered areas in urban settings, such as city parks, are not forestland. Inventories are collected using a <u>'plot'</u> (Figure 3) that occupies 1-acre and is composed of four circular subplots (24 ft. radius), each containing a circular microplot (6.8 ft. radius). Several tree attributes, including species, status (live or dead), cause of death (e.g., harvesting), and diameter at breast height (<u>'dbh'</u>, 4.5 ft.), are collected at each location. Attributes of trees with dbh  $\geq$  5 in. are measured on subplots, whereas trees with a dbh 1-5 in. are measured on microplots. Seedlings (dbh < 1 in.), which include hardwoods

with a height  $\ge$  12 in. and softwoods  $\ge$  6 in. are tallied on the same microplots. In addition to various tree-centric measures, inventories record several site attributes such as ownership group, forest type, stand size/maturity, and more ancillary site attributes to help describe the condition (USDA Forest Service 2019).

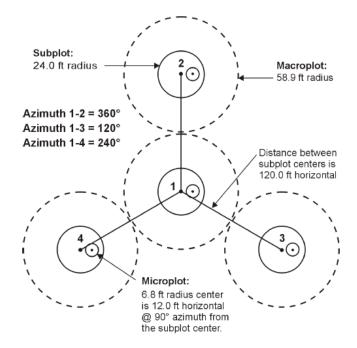



Figure 3. FIA plot design<sup>1</sup>. Note the 'macroplots' depicted in this figure are optional and unused in the region of interest for this analysis.

The annualized forest inventory sampling scheme currently used by FIA was adopted by most eastern states sometime between 1999-2004, varying by state (Burrill et al. 2018). Under the annualized inventory, a subset of FIA plots is measured every year so that all plots within a state are measured over a 5-7-year period, and thus each plot is remeasured every 5-7 years (Bechtold and Patterson 2005). Under this sampling schedule, FIA identifies evaluation datasets (EVALID codes) that can be used to select the most recent complete set of statewide measurements relevant to various attributes of interest in a given year (Bechtold and Patterson 2005, Pugh et al. 2018). In Missouri, for example, a current area evaluation dataset for 2017 included all plots measured from 2011-2017.

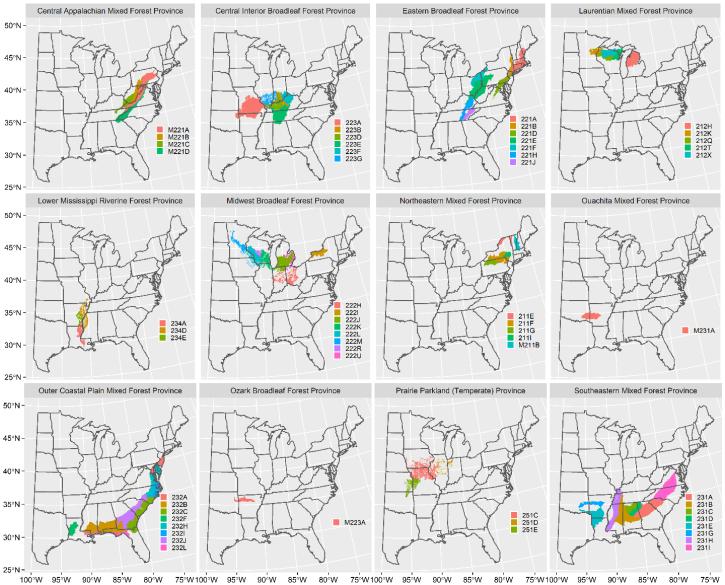
<sup>&</sup>lt;sup>1</sup> From Burrill et al. 2018

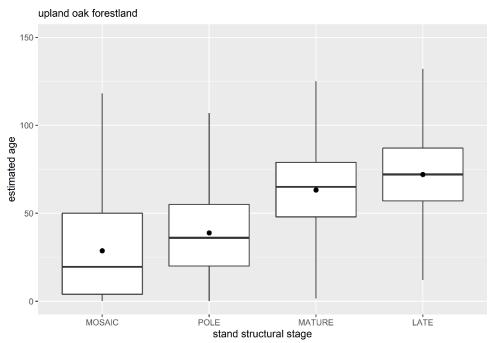
#### TASK-SPECIFIC METHODS

#### TASK 1: CONTEMPORARY RANGE AND PREVALENCE

In this document we refer to '<u>white oak forestland</u>' as forestland where at least one white oak tree of any size is present (i.e., FIA plots where white oak was recorded). Similarly, we refer to forestland where any size or species of upland oak (including white oak) is present as '<u>upland</u> <u>oak forestland</u>.' By definition, white oak forestland is a subset of upland oak forestland.

We assume that upland oak forestland is generally suited for white oaks for several reasons: 1) white oak has a broad range and relatively broad silvical requirements; 2 ) there is general overlap in silvics among white oak and the other upland oaks under consideration (Burns & Honkala 1990); 3) there are inherent limitations of a plot to comprehensively capture forest conditions; and 4) to simplify comparison and interpretation. We further assume that white oak could occupy plots where other upland oaks are present. Thus, unless otherwise explicitly stated, any area-ratio tree estimates (e.g., trees per acre) use upland oak forestland as the area denominator. Recognizing that this assumption is probably weakest in those areas near the white oak range boundaries, to alleviate concern we only used inventory data from those ecological sections with  $\geq$  75,000 acres of white oak forestland. There were 59 ecological sections represent the white oak for task 1 and subsequent analyses (Figure 4).





Figure 4. Ecological sections used to analyze upland oaks, eastern US forestland, 2017. All sections had at least 75,000 acres of forestland with white oak present. Panels depict ecological sections within the same province, a higher level classification. Corresponding section names can be found in Table 1, e.g., section M221A = Northern Ridge and Valley.

# TASK 2: AGE/MATURITY DISTRIBUTION, REGENERATION ELIGIBLE AREAS

To analyze forest age/maturity forestland is categorized into one of four stand structural stages, used as a proxy for age as many forests in the eastern US have tree species that differ drastically in growth strategies and have experienced extensive disturbance histories making nominal forest age difficult to obtain and interpret. The four <u>structural stages</u> are categorized according to basal area and diameter distributions present on a plot (see <u>https://rdrr.io/cran/rFIA/man/standStruct.html</u>) and include 'late', 'mature', 'pole', and 'mosaic' and generally follow an age pattern where late > mature > pole > mosaic. Formally,

- Late stage plots have ≥ 67% of their basal area in mature and large diameter classes (dbh: 10-17 in., and ≥ 18 in., respectively), but more basal area in the large class.
- Mature stage plots have ≥ 67% of their basal area in mature and large diameter classes with more basal area in the mature class, *or*,
  - ≥ 67% of their basal area in mature and pole diameter classes (dbh: 4-9 in.) but more basal area in the mature class.
- **Pole stage** plots have ≥ 67% of their basal area in mature and pole diameter classes but more basal area in the pole class.
- Finally, any plot not meeting the other criteria is categorized as mosaic.

We defined 'r<u>egeneration eligible</u>' areas, i.e., stands that are or will soon be mature enough for a forester to begin contemplating regeneration, as plots in the 'mature' and 'late' stages. Age estimates for regeneration eligible areas vary but are generally  $\geq$  65 years (Figure 5).





TASK 3: SUMMARIZE CANOPY, SAPLING, AND SEEDLING POPULATION OF REGENERATION ELIGIBLE AREAS

All regeneration-based analyses (i.e., tasks 3-6) were based on data from regeneration eligible forestland. Canopy positions are defined by FIA as follows (Burrill et al. 2018):

- **Dominant** trees have crowns extending above the general level of the canopy and receive full light from above and partly from the sides; are larger than the average trees in the stand, and with crowns well developed, but possibly somewhat crowded on the sides.
- **Codominant** trees have crowns forming part of the general level of the canopy cover and receive full light from above, but comparatively little from the side. Two other crown classes were not considered part of the canopy: intermediate and overtopped.
- Intermediate trees are shorter than those in the preceding two classes, with crowns either below or extending into the canopy formed by the dominant and codominant trees and receive little direct light from above, and none from the sides.
- **Overtopped** trees have crowns entirely below the general canopy level and receive no direct light either from above or the sides.

Summaries of '<u>upper canopy'</u> populations for tasks 3-4 include only those trees in dominant or codominant crown classes. We defined the '<u>sapling</u>' population as trees with a dbh 1-3 in, which will generally be in an overtopped crown class in regeneration eligible forests, though that was not an explicit requirement. <u>Seedlings</u> (dbh < 1 in.) include hardwoods (all oaks) with a height  $\geq$  12 in. and softwoods  $\geq$  6 in. <u>Potential sprouts</u> are an estimate of which oak stems with a dbh  $\geq$  3 in. are likely to reproduce via stump sprouting (coppice) if harvested. The sprouting probability for a given tree was estimated from equations used by the Forest Vegetation Simulator, Southern Variant and is a function of upland oak species and diameter (Keyser 2008).

Growing space occupancy was quantified using <u>Gingrich stocking</u> (Gingrich 1967), a measure of site occupancy developed in upland oak forests that considers both the number and size distribution of trees. Gingrich stocking is scaled such that a value of approximately 60(%) represents full stand occupancy, i.e., crown closure, and a value  $\geq$  100(%) suggests overstocking and competition induced mortality, which often begins at a stocking value around 80(%) stocking, will be ubiquitous.

# TASK 4: COMPARE MID- AND UNDERSTORY POPULATION TO CANOPY OF REGENERATION ELIGIBLE AREAS

The mid- and understory populations are compared to the canopy via abundance and relative abundance of white and upland oaks in total and by diameter class and canopy position.

### TASK 5: HIGHLIGHT AREAS OF REGENERATION CONCERN

Regeneration eligible acreage with species of interest present as trees but not as reproduction (seedlings or saplings) is the primary metric used to highlight areas of regeneration concern. Both total acreage and proportional acreage without reproduction is examined by the type of reproduction (seedlings or saplings), and species of interest (white or upland oaks).

# TASK 6: INVESTIGATE EFFECTS OF PLAUSIBLY INFLUENTIAL FACTORS

# SITE PRODUCTIVITY

While site index is probably the most familiar site productivity metric and of great utility, there are inherent challenges in its application in broad scale analyses, including obtaining tree ages, accounting for species growth patterns, as well as assumptions about stand development and disturbance histories. Our analysis of the potential influence of site productivity on upland oak seedling abundance on regeneration eligible upland oak forestland was based on two variables within the FIA database (Burrill et al. 2018): site productivity class (SITECLCD), and physiographic class code (PHYSCLCD). Site productivity class is a classification of forest land in terms of inherent capacity to grow crops of industrial wood. This variable identifies the potential growth in cubic feet/acre/year and is based on the culmination of mean annual increment of fully stocked natural stands. These seven site productivity classes show a correlation with white oak site index values of 35, 55, 65, 70, 80, 100, and 110 ft. at a base age of 50. Physiographic classes attempt to capture the general effect of land form, topographical position, and soil on moisture available to trees.

#### OVERSTORY DENSITY/COMPOSITION

Our analysis of the potential influence of overstory density and composition on upland oak seedling abundance was based on two variables within the FIA database (Burrill et al. 2018): stocking class (ALSTKCD), and forest type code (FORTYPCD).

#### DEER BROWSING

Our analysis of the potential influence of deer density on upland oak seedling abundance was based on categorical estimates of deer density per square mile from the widest-ranging, publicly-available, and single-source data known to us (Walters et al. 2016). These estimates cover from Minnesota south to Louisiana and all states eastward. The estimates are based on data collected from 2001-2005, and while somewhat dated, we note that the 2017 FIA data used included measurements from the preceding 5-7 years and that many of the inventoried upland oak seedlings, which were  $\geq$  12 in. tall, probably germinated even earlier.

#### LAND OWNERSHIP

Our analysis of the potential influence of land ownership on upland oak seedling abundance was based on the ownership group code (OWNGRPCD) within the FIA database (Burrill et al. 2018): which differentiates between Forest Service land, other federal land, state or local government land, and private or Native American lands.

#### OTHER DISTURBANCES

Our analysis of the potential influence of other disturbance types was based on the primary disturbance code (DSTRBCD1) within the FIA database (Burrill et al. 2018). This code indicates the kind of disturbance occurring since the last measurement or within the last 5 years for new plots. The area affected by the disturbance must be at least 1 acre in size. A significant level of disturbance (mortality or damage to 25 percent of the trees in the condition) is required to qualify as a disturbance.

#### INVASIVE SPECIES

Our analysis of the potential influence of invasive species was limited to identifying the most common invasive species on upland oak forestland using FIA invasive species data. Each FIA unit, in collaboration with vegetation experts, has developed lists of the most important invasive species to monitor on forested lands. Canopy cover is estimated for any listed invasive species present on a subplot, regardless of abundance (i.e., there is not minimum cover threshold for sampling). Only listed species rooted in or overhanging (and rooted out of) this condition are included. For tree species, there are no minimum (or maximum) height limits as are required for seedling counts. In the northern US (bounded by North Dakota south to Kansas and eastward from Maine to Maryland), a list of 44 invasive plants are currently (since 2012) inventoried on 12.5% of plots (roughly one per 48,000 acres). In the southern US (bounded by Arkansas south to Louisiana and eastward from Virginia to Florida, plus Oklahoma), at least 49 invasive plants are currently inventoried on all plots. We provide common names for any invasive species mentioned and follow naming conventions in the USDA NRCS PLANTS Database (https://plants.sc.egov.usda.gov/java/).

## RESULTS

#### TASK 1: CONTEMPORARY RANGE AND PREVALENCE

White oak (Quercus alba) is a widespread upland oak with a range spanning much of the eastern US and parts of Canada (Figure 1). Within the eastern US (eastward of 100° W [excluding TX]), forest inventory estimates white oak presence on about 104 million of the estimated 311 million acres of forestland (Figure 6). About 187 million acres in the eastern US were estimated to have at least one upland oak species present (Table 1).

Ecological sections where forestland acres with white oak present exceed 5 million include the Ozark Highlands (223A; 10.92 million acres), Central Appalachian Piedmont (231I; 8.18 million acres), Southern Appalachian Piedmont (231A; 6.33 million acres), Southern Unglaciated Allegheny Plateau (221E; 6.2 million acres) and the Coastal Plains-Middle (231B; 5.16 million acres).

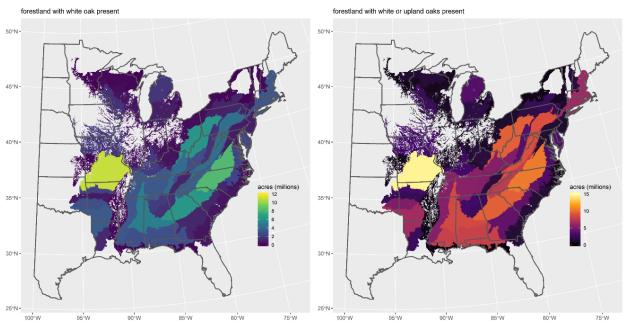



Figure 6. White and upland oak forestland by ecological section, millions of acres, white oak present [L], or any upland oaks present [R], eastern US forestland, 2017.

There are eleven ecological sections where the proportion of white oak forestland exceeded 50% and is at least two-thirds in the Boston Mountains (M223A; 74.5%), Northern Cumberland Plateau (221H; 72.7%), Ozark Highlands (223A; 69.7%), and Central Appalachian Piedmont (231I; 66.5%) sections (Figure 7).

A total of 15 ecological sections have upland oaks present on at least 5 million acres and the proportion of upland oak forestland exceeded 50% in 35 of the 59 ecological sections under consideration. Upland oaks are present on at least 90% of the forestland acres in the Boston Mountains (M223A; 96.8%), Ozark Highlands (223A; 93.3%), Northern Cumberland Plateau (221H; 92%), and Ouachita Mountains (M231A; 90.7%) sections.

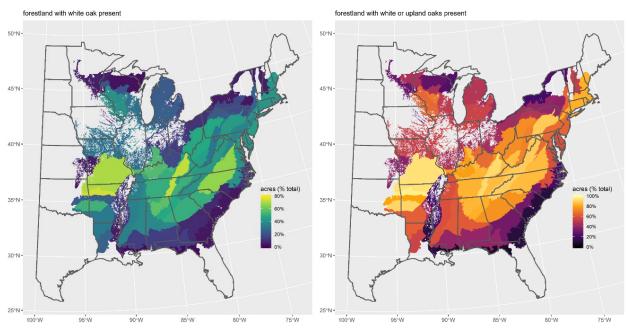



Figure 7. White and upland oak forestland proportion by ecological section, white oak present [L], or any upland oaks present [R] by ecological section, eastern US forestland, 2017.

|        |                                                    |          | Forestland       |           | Proportion |           |  |
|--------|----------------------------------------------------|----------|------------------|-----------|------------|-----------|--|
| SCT_CD | Section Name                                       | Total    | Upland oak       | White oak | Upland oak | White oal |  |
|        |                                                    | <u> </u> | acres (millions) |           | % to       | tal       |  |
| 211E   | St. Lawrence and Champlain Valley                  | 1.82     | 0.43             | 0.12      | 23.4%      | 6.5%      |  |
| 211F   | Northern Glaciated Allegheny Plateau               | 6.18     | 2.47             | 1.12      | 40.0%      | 18.29     |  |
| 211G   | Northern Unglaciated Allegheny Plateau             | 3.97     | 1.90             | 0.91      | 47.9%      | 23.09     |  |
| 2111   | Catskill Mountains                                 | 1.86     | 0.71             | 0.08      | 38.4%      | 4.0%      |  |
| 212H   | Northern Lower Peninsula                           | 7.53     | 3.66             | 1.78      | 48.7%      | 23.6%     |  |
| 212K   | Western Superior Uplands                           | 2.86     | 1.32             | 0.19      | 46.2%      | 6.8%      |  |
| 212Q   | North Central Wisconsin Uplands                    | 1.50     | 0.68             | 0.32      | 45.3%      | 21.19     |  |
| 212T   | Northern Green Bay Lobe                            | 3.39     | 0.80             | 0.10      | 23.7%      | 2.99      |  |
| 212X   | Northern Highlands                                 | 5.78     | 1.56             | 0.17      | 27.1%      | 2.99      |  |
| 221A   | Lower New England                                  | 7.69     | 6.33             | 3.23      | 82.3%      | 42.09     |  |
| 221B   | Hudson Valley                                      | 1.58     | 1.01             | 0.41      | 64.1%      | 25.99     |  |
| 221D   | Northern Appalachian Piedmont                      | 2.07     | 1.36             | 0.76      | 65.7%      | 36.55     |  |
| 221E   | Southern Unglaciated Allegheny Plateau             | 12.83    | 9.48             | 6.20      | 73.9%      | 48.39     |  |
| 221F   | Western Glaciated Allegheny Plateau                | 2.72     | 1.19             | 0.31      | 43.8%      | 11.59     |  |
| 221H   | Northern Cumberland Plateau                        | 5.86     | 5.39             | 4.26      | 92.0%      | 72.79     |  |
| 221J   | Central Ridge and Valley                           | 2.07     | 1.76             | 1.06      | 85.1%      | 51.49     |  |
| 222H   | Central Till Plains-Beech-Maple                    | 2.20     | 0.98             | 0.30      | 44.6%      | 13.89     |  |
| 2221   | Erie and Ontario Lake Plain                        | 2.29     | 0.46             | 0.12      | 20.1%      | 5.39      |  |
| 222J   | South Central Great Lakes                          | 3.57     | 1.94             | 0.88      | 54.2%      | 24.69     |  |
| 222K   | Southwestern Great Lakes Morainal                  | 1.76     | 0.90             | 0.53      | 51.1%      | 30.09     |  |
| 222L   | North Central U.S. Driftless and Escarpment        | 3.92     | 2.55             | 1.58      | 65.0%      | 40.39     |  |
| 222M   | Minnesota and Northeast Iowa Morainal-Oak Savannah | 1.73     | 0.50             | 0.10      | 28.8%      | 5.69      |  |
| 222R   | Wisconsin Central Sands                            | 1.24     | 0.85             | 0.49      | 68.8%      | 39.39     |  |
| 222U   | Lake Whittlesey Glaciolacustrine Plain             | 0.91     | 0.38             | 0.15      | 41.8%      | 16.69     |  |
| 223A   | Ozark Highlands                                    | 15.68    | 14.63            | 10.92     | 93.3%      | 69.79     |  |
| 223B   | Interior Low Plateau-Transition Hills              | 1.58     | 1.33             | 0.86      | 84.5%      | 54.29     |  |
| 223D   | Interior Low Plateau-Shawnee Hills                 | 3.75     | 2.94             | 2.07      | 78.3%      | 55.09     |  |
| 223E   | Interior Low Plateau-Highland Rim                  | 6.68     | 5.56             | 3.35      | 83.2%      | 50.29     |  |
| 223F   | Interior Low Plateau-Bluegrass                     | 2.60     | 1.71             | 0.45      | 65.8%      | 17.59     |  |
| 223G   | Central Till Plains-Oak Hickory                    | 2.05     | 0.95             | 0.58      | 46.5%      | 28.29     |  |

#### Table 1. White and upland oak forestland area by ecological section, eastern US forestland, 2017.

|        |                                                |          |        | Forestland       |           | Proportion |           |  |  |
|--------|------------------------------------------------|----------|--------|------------------|-----------|------------|-----------|--|--|
| SCT_CD | Section Name                                   |          | Total  | Upland oak       | White oak | Upland oak | White oak |  |  |
|        |                                                |          |        | acres (millions) |           | % to       | tal       |  |  |
| 231A   | Southern Appalachian Piedmont                  |          | 12.59  | 9.48             | 6.33      | 75.3%      | 50.3%     |  |  |
| 231B   | Coastal Plains-Middle                          |          | 13.69  | 8.46             | 5.16      | 61.8%      | 37.7%     |  |  |
| 231C   | Southern Cumberland Plateau                    |          | 3.52   | 2.95             | 2.01      | 84.0%      | 57.1%     |  |  |
| 231D   | Southern Ridge and Valley                      | <u>_</u> | 3.21   | 2.65             | 1.55      | 82.3%      | 48.3%     |  |  |
| 231E   | Mid Coastal Plains-Western                     |          | 10.39  | 6.54             | 3.42      | 62.9%      | 32.9%     |  |  |
| 231G   | Arkansas Valley                                |          | 2.95   | 2.36             | 0.71      | 80.0%      | 24.0%     |  |  |
| 231H   | Coastal Plains-Loess                           |          | 9.11   | 5.39             | 3.20      | 59.2%      | 35.2%     |  |  |
| 2311   | Central Appalachian Piedmont                   |          | 12.31  | 10.44            | 8.18      | 84.8%      | 66.5%     |  |  |
| 232A   | Northern Atlantic Coastal Plain                |          | 1.91   | 1.21             | 0.85      | 63.6%      | 44.7%     |  |  |
| 232B   | Gulf Coastal Plains and Flatwoods              |          | 19.93  | 8.00             | 2.92      | 40.1%      | 14.7%     |  |  |
| 232C   | Atlantic Coastal Flatwoods                     |          | 13.53  | 1.51             | 0.57      | 11.2%      | 4.2%      |  |  |
| 232F   | Coastal Plains and Flatwoods-Western Gulf      |          | 4.83   | 2.62             | 1.23      | 54.2%      | 25.5%     |  |  |
| 232H   | Middle Atlantic Coastal Plains and Flatwoods   |          | 5.76   | 3.41             | 2.38      | 59.2%      | 41.4%     |  |  |
| 2321   | Northern Atlantic Coastal Flatwoods            |          | 3.46   | 0.73             | 0.42      | 21.1%      | 12.2%     |  |  |
| 232J   | Southern Atlantic Coastal Plains and Flatwoods |          | 13.07  | 4.09             | 1.15      | 31.3%      | 8.8%      |  |  |
| 232L   | Gulf Coastal Lowlands                          |          | 4.72   | 0.30             | 0.09      | 6.3%       | 1.9%      |  |  |
| 234A   | Southern Mississippi Alluvial Plain            |          | 2.74   | 0.34             | 0.14      | 12.6%      | 5.2%      |  |  |
| 234D   | White and Black River Alluvial Plains          |          | 2.72   | 0.56             | 0.32      | 20.5%      | 11.8%     |  |  |
| 234E   | Arkansas Alluvial Plains                       |          | 1.12   | 0.48             | 0.22      | 43.1%      | 19.2%     |  |  |
| 251C   | Central Dissected Till Plains                  |          | 5.73   | 3.04             | 1.73      | 53.1%      | 30.1%     |  |  |
| 251D   | Central Till Plains and Grand Prairies         |          | 0.78   | 0.43             | 0.27      | 55.2%      | 34.5%     |  |  |
| 251E   | Osage Plains                                   |          | 1.62   | 0.60             | 0.08      | 37.0%      | 4.7%      |  |  |
| M211B  | New England Piedmont                           |          | 3.26   | 1.70             | 0.19      | 52.0%      | 5.8%      |  |  |
| M221A  | Northern Ridge and Valley                      |          | 10.05  | 8.85             | 4.38      | 88.1%      | 43.5%     |  |  |
| M221B  | Allegheny Mountains                            |          | 5.06   | 3.61             | 1.61      | 71.2%      | 31.9%     |  |  |
| M221C  | Northern Cumberland Mountains                  |          | 6.13   | 5.23             | 2.81      | 85.2%      | 45.8%     |  |  |
| M221D  | Blue Ridge Mountains                           |          | 8.58   | 7.66             | 3.60      | 89.2%      | 41.9%     |  |  |
| M223A  | Boston Mountains                               |          | 3.02   | 2.92             | 2.25      | 96.8%      | 74.5%     |  |  |
| M231A  | Ouachita Mountains                             |          | 5.72   | 5.19             | 2.96      | 90.7%      | 51.7%     |  |  |
|        |                                                | TOTAL    | 311.17 | 186.48           | 104.12    | 60.0%      | 33.5%     |  |  |

# TASK 2: AGE/MATURITY DISTRIBUTION, REGENERATION ELIGIBLE AREAS

White and upland oak forestland is largely mature or older (Figure 8). About 75% of all white oak acres are classified as 'regeneration eligible' (mature or late structural stage) and that proportion is almost 60% or greater in each of the 59 ecological sections under consideration (Figure 9). Conversely, < 3% is classified as young (mosaic) across the entire eastern US. upland oak forestland

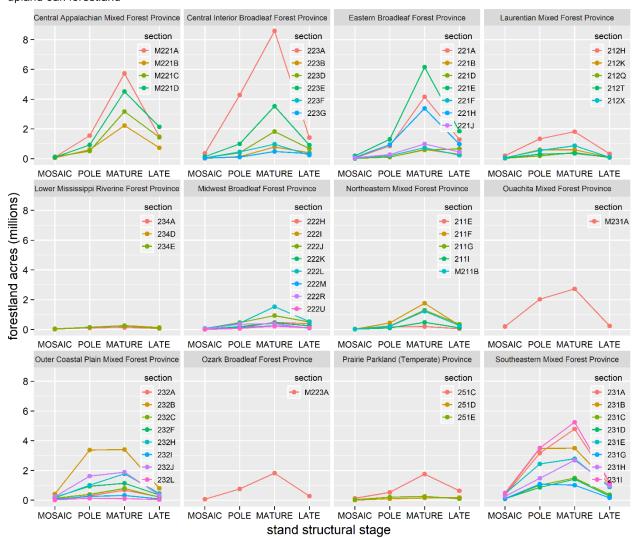



Figure 8. Upland oak forestland area by structural stage and ecological section, millions of acres, eastern US upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

Across the range, 24 ecological sections have  $\geq$  1 million regeneration eligible acres with white oak present, and the Ozark Highlands (223A; 8.0 million acres), Southern Unglaciated Allegheny Plateau (221E; 5.3 million acres), and Central Appalachian Piedmont (231I; 5.2 million acres) all exceed 5 million regeneration eligible acres (Table 2). Over 70% of upland oak forestland can be classified as regeneration eligible; at least 49% in each ecological section (Figure 10), while young forest was only about 3%. These age imbalances are not limited to oak forestland, about 65% of all forestland in the area under consideration is regeneration eligible and only about 5% young. Sections vary in the amount of mature forest but, young forest was low across all sections. Some sections, like Gulf Coastal Plains and Flatwoods [232B] and Coastal Plains-Middle [231B] had similar pole and mature proportions but that was uncommon overall.

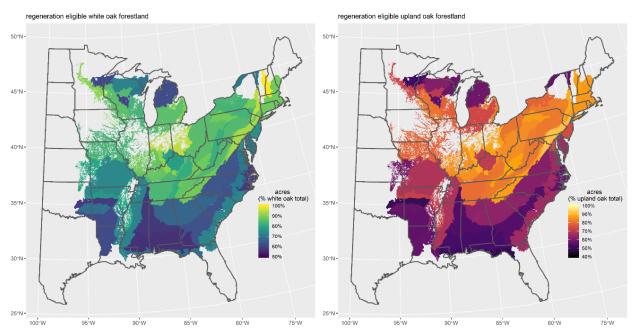



Figure 9. White and upland oak forestland regeneration eligible proportion by ecological section, white oak present [L] or any upland oak present [R]. Regeneration eligible includes forestland in mature or late structural stages (see Figure 5).

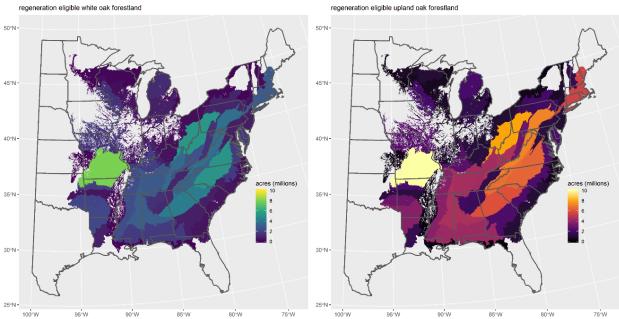



Figure 10. White and upland oak forestland regeneration eligible area, millions of acres, white oak [L] or any upland oak present [R], eastern US forestland, 2017.

|        |                                                    | Regei | neration eligible fo | Proportion |            |           |  |
|--------|----------------------------------------------------|-------|----------------------|------------|------------|-----------|--|
| SCT_CD | Section Name                                       | Total | Upland oak           | White oak  | Upland oak | White oak |  |
|        | <del>.</del>                                       |       | acres (millions)     |            | % specie   | es total  |  |
| 211E   | St. Lawrence and Champlain Valley                  | 0.90  | 0.24                 | 0.08       | 56%        | 70%       |  |
| 211F   | Northern Glaciated Allegheny Plateau               | 4.82  | 2.02                 | 0.93       | 82%        | 83%       |  |
| 211G   | Northern Unglaciated Allegheny Plateau             | 3.31  | 1.65                 | 0.81       | 87%        | 88%       |  |
| 2111   | Catskill Mountains                                 | 1.52  | 0.59                 | 0.07       | 83%        | 89%       |  |
| 212H   | Northern Lower Peninsula                           | 4.01  | 2.13                 | 1.10       | 58%        | 62%       |  |
| 212K   | Western Superior Uplands                           | 1.22  | 0.68                 | 0.12       | 51%        | 61%       |  |
| 212Q   | North Central Wisconsin Uplands                    | 0.86  | 0.48                 | 0.27       | 70%        | 84%       |  |
| 212T   | Northern Green Bay Lobe                            | 1.43  | 0.46                 | 0.07       | 57%        | 69%       |  |
| 212X   | Northern Highlands                                 | 2.80  | 0.96                 | 0.12       | 61%        | 72%       |  |
| 221A   | Lower New England                                  | 6.34  | 5.44                 | 2.85       | 86%        | 88%       |  |
| 221B   | Hudson Valley                                      | 1.30  | 0.90                 | 0.39       | 89%        | 95%       |  |
| 221D   | Northern Appalachian Piedmont                      | 1.79  | 1.25                 | 0.70       | 92%        | 93%       |  |
| 221E   | Southern Unglaciated Allegheny Plateau             | 10.32 | 8.00                 | 5.28       | 84%        | 85%       |  |
| 221F   | Western Glaciated Allegheny Plateau                | 2.03  | 0.96                 | 0.26       | 81%        | 85%       |  |
| 221H   | Northern Cumberland Plateau                        | 4.61  | 4.35                 | 3.45       | 81%        | 81%       |  |
| 221J   | Central Ridge and Valley                           | 1.58  | 1.43                 | 0.92       | 81%        | 86%       |  |
| 222H   | Central Till Plains-Beech-Maple                    | 1.76  | 0.86                 | 0.29       | 88%        | 95%       |  |
| 2221   | Erie and Ontario Lake Plain                        | 1.63  | 0.36                 | 0.10       | 78%        | 83%       |  |
| 222J   | South Central Great Lakes                          | 2.48  | 1.43                 | 0.75       | 74%        | 85%       |  |
| 222K   | Southwestern Great Lakes Morainal                  | 1.16  | 0.70                 | 0.44       | 78%        | 83%       |  |
| 222L   | North Central U.S. Driftless and Escarpment        | 2.91  | 2.06                 | 1.35       | 81%        | 85%       |  |
| 222M   | Minnesota and Northeast Iowa Morainal-Oak Savannah | 1.14  | 0.37                 | 0.09       | 73%        | 91%       |  |
| 222R   | Wisconsin Central Sands                            | 0.60  | 0.47                 | 0.29       | 55%        | 60%       |  |
| 222U   | Lake Whittlesey Glaciolacustrine Plain             | 0.62  | 0.31                 | 0.13       | 82%        | 90%       |  |
| 223A   | Ozark Highlands                                    | 10.62 | 10.00                | 8.00       | 68%        | 73%       |  |
| 223B   | Interior Low Plateau-Transition Hills              | 1.36  | 1.18                 | 0.78       | 89%        | 91%       |  |
| 223D   | Interior Low Plateau-Shawnee Hills                 | 3.10  | 2.49                 | 1.79       | 85%        | 87%       |  |
| 223E   | Interior Low Plateau-Highland Rim                  | 5.15  | 4.43                 | 2.80       | 80%        | 84%       |  |
| 223F   | Interior Low Plateau-Bluegrass                     | 1.79  | 1.20                 | 0.35       | 70%        | 78%       |  |
| 223G   | Central Till Plains-Oak Hickory                    | 1.70  | 0.81                 | 0.51       | 85%        | 88%       |  |

| Table 2. White and upland oak regeneration eligible f | orestland by ecological section, eastern US forestland, 2017. |
|-------------------------------------------------------|---------------------------------------------------------------|
|                                                       |                                                               |

19 | Page

|        |                                                | Rege   | neration eligible fo | prestland | Proportion |           |  |  |
|--------|------------------------------------------------|--------|----------------------|-----------|------------|-----------|--|--|
| SCT_CD | Section Name                                   | Total  | Upland oak           | White oak | Upland oak | White oak |  |  |
|        |                                                |        | acres (millions)     |           | % specie   | es total  |  |  |
| 231A   | Southern Appalachian Piedmont                  | 7.61   | 5.98                 | 4.21      | 63%        | 67%       |  |  |
| 231B   | Coastal Plains-Middle                          | 7.05   | 4.57                 | 2.98      | 54%        | 58%       |  |  |
| 231C   | Southern Cumberland Plateau                    | 2.14   | 1.86                 | 1.32      | 63%        | 66%       |  |  |
| 231D   | Southern Ridge and Valley                      | 1.91   | 1.69                 | 1.03      | 64%        | 67%       |  |  |
| 231E   | Mid Coastal Plains-Western                     | 5.58   | 3.67                 | 2.10      | 56%        | 61%       |  |  |
| 231G   | Arkansas Valley                                | 1.44   | 1.17                 | 0.41      | 49%        | 58%       |  |  |
| 231H   | Coastal Plains-Loess                           | 5.92   | 3.66                 | 2.32      | 68%        | 72%       |  |  |
| 2311   | Central Appalachian Piedmont                   | 7.46   | 6.43                 | 5.19      | 62%        | 63%       |  |  |
| 232A   | Northern Atlantic Coastal Plain                | 1.34   | 0.90                 | 0.64      | 74%        | 75%       |  |  |
| 232B   | Gulf Coastal Plains and Flatwoods              | 9.89   | 4.21                 | 1.66      | 53%        | 57%       |  |  |
| 232C   | Atlantic Coastal Flatwoods                     | 6.16   | 0.99                 | 0.42      | 66%        | 73%       |  |  |
| 232F   | Coastal Plains and Flatwoods-Western Gulf      | 2.41   | 1.49                 | 0.76      | 57%        | 62%       |  |  |
| 232H   | Middle Atlantic Coastal Plains and Flatwoods   | 3.44   | 2.24                 | 1.67      | 66%        | 70%       |  |  |
| 2321   | Northern Atlantic Coastal Flatwoods            | 1.67   | 0.41                 | 0.24      | 56%        | 58%       |  |  |
| 232J   | Southern Atlantic Coastal Plains and Flatwoods | 6.52   | 2.22                 | 0.72      | 54%        | 63%       |  |  |
| 232L   | Gulf Coastal Lowlands                          | 2.00   | 0.15                 | 0.06      | 49%        | 69%       |  |  |
| 234A   | Southern Mississippi Alluvial Plain            | 1.78   | 0.20                 | 0.10      | 57%        | 73%       |  |  |
| 234D   | White and Black River Alluvial Plains          | 1.92   | 0.40                 | 0.25      | 71%        | 79%       |  |  |
| 234E   | Arkansas Alluvial Plains                       | 0.69   | 0.31                 | 0.16      | 64%        | 72%       |  |  |
| 251C   | Central Dissected Till Plains                  | 4.23   | 2.39                 | 1.43      | 78%        | 83%       |  |  |
| 251D   | Central Till Plains and Grand Prairies         | 0.60   | 0.33                 | 0.23      | 76%        | 84%       |  |  |
| 251E   | Osage Plains                                   | 0.93   | 0.35                 | 0.06      | 59%        | 80%       |  |  |
| M211B  | New England Piedmont                           | 2.55   | 1.48                 | 0.19      | 87%        | 100%      |  |  |
| M221A  | Northern Ridge and Valley                      | 8.00   | 7.20                 | 3.68      | 81%        | 84%       |  |  |
| M221B  | Allegheny Mountains                            | 4.09   | 2.95                 | 1.32      | 82%        | 82%       |  |  |
| M221C  | Northern Cumberland Mountains                  | 5.23   | 4.60                 | 2.48      | 88%        | 88%       |  |  |
| M221D  | Blue Ridge Mountains                           | 7.33   | 6.65                 | 3.19      | 87%        | 89%       |  |  |
| M223A  | Boston Mountains                               | 2.16   | 2.10                 | 1.72      | 72%        | 76%       |  |  |
| M231A  | Ouachita Mountains                             | 3.13   | 2.96                 | 2.01      | 57%        | 68%       |  |  |
|        | TOTAL                                          | 200.02 | 131.74               | 77.64     | 70.6%      | 74.6%     |  |  |

TASK 3: SUMMARIZE CANOPY, SAPLING, AND SEEDLING POPULATIONS OF REGENERATION ELIGIBLE AREAS

Across regeneration eligible upland oak forestland, there are about 550 trees per acre (dbh  $\geq$  1 in.) of all species, on average, of which white oak averages about 4% and upland oaks together average about 12% (Table 3). On regeneration eligible upland oak forestland, most trees tend to be in either overtopped or codominant canopy positions. Intermediate trees are common though noticeably less abundant than canopy positions below or immediately above. Across the range, trees of all species in a dominant canopy position were rare, averaging  $\approx$  3 trees per acre.

Across all regeneration eligible upland oak forestland in the region under consideration, the total Gingrich stocking value for all species (dbh  $\geq$  1 in.) averages about 109, but ranges from  $\approx$  96 – 147 (Figure 11).

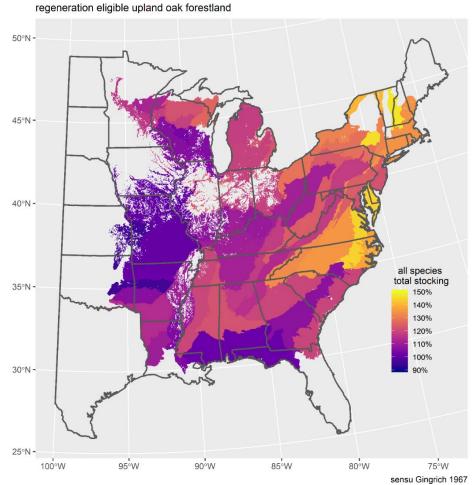



Figure 11. All species total Gingrich stocking by ecological section, (dbh ≥ 1 in.), eastern US regeneration eligible upland oak forestland, 2017.

|        |                                             |     | All sp  | ecies   |     | ι   | Jpland | d oaks | 5        | White oak |     |     |     |
|--------|---------------------------------------------|-----|---------|---------|-----|-----|--------|--------|----------|-----------|-----|-----|-----|
| SCT_CD | Section Name                                | OVT | INT     | CoD     | DOM | OVT | INT    | CoD    | DOM      | OVT       | INT | CoD | DOM |
|        |                                             |     | trees p | er acre |     |     |        | ••     | .% All s | pecies.   |     |     |     |
| 211E   | St. Lawrence and Champlain Valley           | 482 | 135     | 122     | 2   | 9%  | 5%     | 16%    | 12%      | 1%        | 0%  | 2%  | 0%  |
| 211F   | Northern Glaciated Allegheny Plateau        | 312 | 63      | 108     | 1   | 5%  | 10%    | 29%    | 39%      | 1%        | 3%  | 6%  | 3%  |
| 211G   | Northern Unglaciated Allegheny Plateau      | 277 | 73      | 100     | 3   | 6%  | 15%    | 34%    | 41%      | 2%        | 6%  | 8%  | 13% |
| 2111   | Catskill Mountains                          | 385 | 56      | 127     | 1   | 3%  | 4%     | 22%    | 18%      | 0%        | 1%  | 1%  | 0%  |
| 212H   | Northern Lower Peninsula                    | 321 | 110     | 121     | 4   | 10% | 18%    | 22%    | 18%      | 4%        | 7%  | 6%  | 4%  |
| 212K   | Western Superior Uplands                    | 288 | 195     | 145     | 4   | 6%  | 6%     | 12%    | 20%      | 1%        | 1%  | 1%  | 2%  |
| 212Q   | North Central Wisconsin Uplands             | 368 | 96      | 97      | 5   | 6%  | 9%     | 22%    | 30%      | 1%        | 3%  | 5%  | 11% |
| 212T   | Northern Green Bay Lobe                     | 349 | 138     | 126     | 5   | 6%  | 7%     | 9%     | 17%      | 0%        | 0%  | 1%  | 0%  |
| 212X   | Northern Highlands                          | 430 | 153     | 116     | 4   | 4%  | 6%     | 15%    | 19%      | 0%        | 0%  | 1%  | 2%  |
| 221A   | Lower New England                           | 351 | 56      | 104     | 2   | 8%  | 17%    | 30%    | 18%      | 2%        | 4%  | 5%  | 2%  |
| 221B   | Hudson Valley                               | 305 | 52      | 89      | 3   | 5%  | 9%     | 27%    | 18%      | 2%        | 1%  | 4%  | 2%  |
| 221D   | Northern Appalachian Piedmont               | 250 | 60      | 67      | 3   | 8%  | 14%    | 35%    | 45%      | 4%        | 5%  | 9%  | 15% |
| 221E   | Southern Unglaciated Allegheny Plateau      | 313 | 68      | 80      | 4   | 7%  | 13%    | 28%    | 24%      | 2%        | 4%  | 9%  | 8%  |
| 221F   | Western Glaciated Allegheny Plateau         | 299 | 67      | 82      | 4   | 4%  | 5%     | 12%    | 32%      | 0%        | 0%  | 2%  | 9%  |
| 221H   | Northern Cumberland Plateau                 | 439 | 85      | 92      | 4   | 6%  | 14%    | 31%    | 21%      | 2%        | 5%  | 12% | 10% |
| 221J   | Central Ridge and Valley                    | 383 | 71      | 86      | 7   | 8%  | 16%    | 27%    | 22%      | 3%        | 4%  | 6%  | 8%  |
| 222H   | Central Till Plains-Beech-Maple             | 350 | 58      | 64      | 6   | 3%  | 8%     | 16%    | 29%      | 0%        | 1%  | 5%  | 9%  |
| 2221   | Erie and Ontario Lake Plain                 | 370 | 53      | 105     | 1   | 6%  | 10%    | 20%    | 27%      | 0%        | 0%  | 2%  | 0%  |
| 222J   | South Central Great Lakes                   | 292 | 79      | 78      | 6   | 8%  | 22%    | 30%    | 26%      | 2%        | 8%  | 7%  | 6%  |
| 222K   | Southwestern Great Lakes Morainal           | 205 | 76      | 80      | 4   | 9%  | 11%    | 28%    | 41%      | 5%        | 4%  | 12% | 12% |
| 222L   | North Central U.S. Driftless and Escarpment | 299 | 104     | 69      | 4   | 5%  | 12%    | 32%    | 24%      | 2%        | 4%  | 10% | 5%  |
| 222M   | Minnesota & NE Iowa Morainal-Oak Savannah   | 314 | 101     | 107     | 4   | 3%  | 2%     | 16%    | 41%      | 1%        | 0%  | 3%  | 9%  |
| 222R   | Wisconsin Central Sands                     | 278 | 126     | 141     | 12  | 11% | 20%    | 15%    | 28%      | 5%        | 6%  | 6%  | 8%  |
| 222U   | Lake Whittlesey Glaciolacustrine Plain      | 331 | 115     | 71      | 12  | 3%  | 5%     | 15%    | 18%      | 1%        | 2%  | 5%  | 8%  |
| 223A   | Ozark Highlands                             | 313 | 107     | 93      | 4   | 16% | 29%    | 57%    | 56%      | 8%        | 12% | 19% | 16% |
| 223B   | Interior Low Plateau-Transition Hills       | 296 | 71      | 72      | 2   | 4%  | 15%    | 30%    | 27%      | 2%        | 4%  | 9%  | 11% |
| 223D   | Interior Low Plateau-Shawnee Hills          | 320 | 84      | 94      | 3   | 7%  | 14%    | 21%    | 22%      | 3%        | 4%  | 8%  | 10% |
| 223E   | Interior Low Plateau-Highland Rim           | 360 | 73      | 80      | 5   | 6%  | 12%    | 26%    | 21%      | 2%        | 4%  | 10% | 8%  |
| 223F   | Interior Low Plateau-Bluegrass              | 296 | 88      | 85      | 3   | 9%  | 11%    | 18%    | 28%      | 1%        | 2%  | 4%  | 8%  |
| 223G   | Central Till Plains-Oak Hickory             | 288 | 59      | 73      | 3   | 4%  | 10%    | 28%    | 23%      | 2%        | 4%  | 12% | 7%  |
| 231A   | Southern Appalachian Piedmont               | 399 | 96      | 131     | 2   | 8%  | 12%    | 15%    | 6%       | 4%        | 4%  | 6%  | 2%  |
| 231B   | Coastal Plains-Middle                       | 463 | 92      | 134     | 4   | 8%  | 11%    | 12%    | 12%      | 4%        | 5%  | 5%  | 9%  |
| 231C   | Southern Cumberland Plateau                 | 419 | 66      | 123     | 3   | 9%  | 16%    | 26%    | 4%       | 4%        | 5%  | 8%  | 4%  |
| 231D   | Southern Ridge and Valley                   | 418 | 88      | 125     | 1   | 10% | 15%    | 23%    | 54%      | 3%        | 4%  | 4%  | 11% |

Table 3. Abundance and relative abundance by canopy position and ecological section, trees per acre (dbh  $\ge$  1 in.), eastern US regeneration eligible upland oak forestland, 2017. OVT = overtopped, INT = intermediate, CoD = codominant, DOM = dominant.

|        |                                              |                | All sp | ecies |     | ι   | Jpland | d oaks | 5             | White oak |     |     |     |  |  |  |  |
|--------|----------------------------------------------|----------------|--------|-------|-----|-----|--------|--------|---------------|-----------|-----|-----|-----|--|--|--|--|
| SCT_CD | Section Name                                 | OVT            | INT    | CoD   | DOM | OVT | INT    | CoD    | DOM           | OVT       | INT | CoD | DOM |  |  |  |  |
|        |                                              | trees per acre |        |       |     |     |        |        | % All species |           |     |     |     |  |  |  |  |
| 231E   | Mid Coastal Plains-Western                   | 439            | 88     | 136   | 2   | 8%  | 7%     | 10%    | 23%           | 4%        | 2%  | 4%  | 2%  |  |  |  |  |
| 231G   | Arkansas Valley                              | 300            | 78     | 125   | 2   | 13% | 19%    | 32%    | 26%           | 3%        | 1%  | 3%  | 0%  |  |  |  |  |
| 231H   | Coastal Plains-Loess                         | 476            | 68     | 94    | 4   | 8%  | 12%    | 16%    | 14%           | 4%        | 5%  | 6%  | 10% |  |  |  |  |
| 2311   | Central Appalachian Piedmont                 | 473            | 78     | 164   | 4   | 9%  | 15%    | 17%    | 16%           | 4%        | 7%  | 7%  | 10% |  |  |  |  |
| 232A   | Northern Atlantic Coastal Plain              | 244            | 110    | 80    | 2   | 11% | 21%    | 37%    | 26%           | 5%        | 10% | 16% | 7%  |  |  |  |  |
| 232B   | Gulf Coastal Plains and Flatwoods            | 359            | 86     | 116   | 4   | 6%  | 8%     | 7%     | 7%            | 2%        | 2%  | 3%  | 6%  |  |  |  |  |
| 232C   | Atlantic Coastal Flatwoods                   | 383            | 115    | 160   | 7   | 6%  | 4%     | 4%     | 1%            | 3%        | 2%  | 2%  | 1%  |  |  |  |  |
| 232F   | Coastal Plains and Flatwoods-Western Gulf    | 351            | 60     | 129   | 2   | 9%  | 11%    | 9%     | 6%            | 3%        | 2%  | 3%  | 3%  |  |  |  |  |
| 232H   | Middle Atlantic Coastal Plains & Flatwoods   | 479            | 119    | 128   | 4   | 5%  | 8%     | 14%    | 22%           | 2%        | 3%  | 7%  | 9%  |  |  |  |  |
| 2321   | Northern Atlantic Coastal Flatwoods          | 395            | 188    | 157   | 2   | 4%  | 3%     | 5%     | 6%            | 2%        | 1%  | 4%  | 0%  |  |  |  |  |
| 232J   | Southern Atlantic Coastal Plains & Flatwoods | 319            | 88     | 158   | 2   | 8%  | 9%     | 9%     | 24%           | 2%        | 2%  | 2%  | 2%  |  |  |  |  |
| 232L   | Gulf Coastal Lowlands                        | 369            | 80     | 113   | 1   | 2%  | 4%     | 2%     | 0%            | 1%        | 1%  | 1%  | 0%  |  |  |  |  |
| 234A   | Southern Mississippi Alluvial Plain          | 325            | 57     | 87    | 4   | 9%  | 2%     | 7%     | 0%            | 2%        | 1%  | 1%  | 0%  |  |  |  |  |
| 234D   | White and Black River Alluvial Plains        | 390            | 60     | 114   | 3   | 9%  | 9%     | 15%    | 25%           | 4%        | 5%  | 5%  | 14% |  |  |  |  |
| 234E   | Arkansas Alluvial Plains                     | 353            | 43     | 120   | 8   | 5%  | 10%    | 18%    | 0%            | 2%        | 5%  | 3%  | 0%  |  |  |  |  |
| 251C   | Central Dissected Till Plains                | 257            | 73     | 76    | 5   | 5%  | 12%    | 35%    | 35%           | 2%        | 4%  | 17% | 13% |  |  |  |  |
| 251D   | Central Till Plains and Grand Prairies       | 288            | 85     | 86    | 5   | 7%  | 5%     | 24%    | 30%           | 2%        | 2%  | 11% | 4%  |  |  |  |  |
| 251E   | Osage Plains                                 | 252            | 77     | 73    | 3   | 5%  | 17%    | 28%    | 31%           | 0%        | 3%  | 3%  | 0%  |  |  |  |  |
| M211B  | New England Piedmont                         | 447            | 92     | 119   | 3   | 4%  | 7%     | 17%    | 20%           | 0%        | 0%  | 0%  | 0%  |  |  |  |  |
| M221A  | Northern Ridge and Valley                    | 287            | 75     | 103   | 2   | 10% | 18%    | 45%    | 47%           | 2%        | 3%  | 8%  | 6%  |  |  |  |  |
| M221B  | Allegheny Mountains                          | 308            | 86     | 95    | 1   | 6%  | 11%    | 34%    | 20%           | 1%        | 2%  | 6%  | 3%  |  |  |  |  |
| M221C  | Northern Cumberland Mountains                | 433            | 70     | 93    | 2   | 5%  | 13%    | 29%    | 27%           | 1%        | 3%  | 6%  | 5%  |  |  |  |  |
| M221D  | Blue Ridge Mountains                         | 346            | 55     | 96    | 2   | 7%  | 18%    | 37%    | 13%           | 1%        | 3%  | 5%  | 2%  |  |  |  |  |
| M223A  | Boston Mountains                             | 339            | 78     | 114   | 3   | 9%  | 15%    | 40%    | 53%           | 4%        | 5%  | 16% | 24% |  |  |  |  |
| M231A  | Ouachita Mountains                           | 482            | 135    | 122   | 2   | 9%  | 5%     | 16%    | 12%           | 1%        | 0%  | 2%  | 0%  |  |  |  |  |
|        | Area-weighted average                        | 359            | 83     | 107   | 3   | 8%  | 14%    | 25%    | 25%           | 3%        | 5%  | 7%  | 8%  |  |  |  |  |

The aforementioned pattern of increasing oak relative abundance with canopy position is perhaps more apparent in terms of growing space occupancy i.e., Gingrich stocking (Table 4). Across the range, white oaks (dbh  $\geq$  1 in.) average a Gingrich stocking value of about 9, with  $\approx$  2 in overtopped and intermediate canopy positions but  $\approx$  7 in codominant and dominant canopy positions in regeneration eligible forestland. This equates to about 8% of the total stocking across all species and sizes, 5% of total lower canopy stocking and 10% of total upper canopy.

Five large ecological sections (regeneration eligible upland oak acres  $\geq$  1 million) have white oak upper canopy Gingrich stocking  $\gtrsim$  10 (Figure 12), including the Central Dissected Till Plains (251c; 13.4), Ozark Highlands (223A; 13.3), Boston Mountains (M223A; 13.0), Central Appalachian Piedmont (231I; 9.64, and Northern Cumberland Plateau (221H; 9.5). However, canopy populations can also vary within an ecological section, suggesting more localized drivers and management influence canopy composition. For example, white oak stocking can be considerably higher locally within an ecological section (Figure 13). Local scale visualizations also bolster the perception that the Interior Highlands of Missouri and Arkansas are an iconic location for white oak dominated forests.

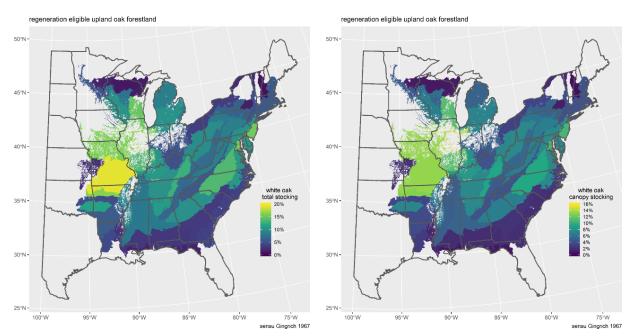



Figure 12. White oak total and upper canopy Gingrich stocking by ecological section, total (dbh  $\ge$  1 in.) [L], upper canopy (dominant or codominant) [R], eastern US regeneration eligible upland oak forestland, 2017.

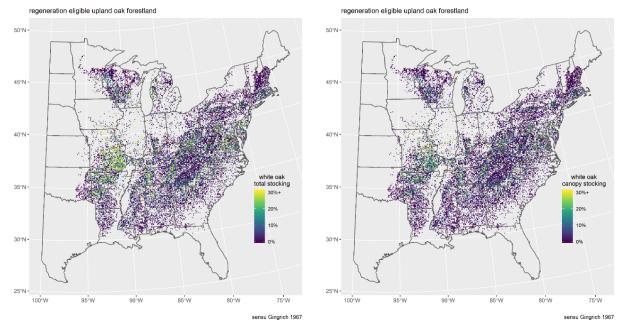



Figure 13. White oak total and upper canopy Gingrich stocking, local scale, total (dbh ≥ 1 in.) [L], upper canopy (dominant or codominant) [R], eastern US regeneration eligible upland oak forestland, 2017. Each cell represents ≈12,000 acres.

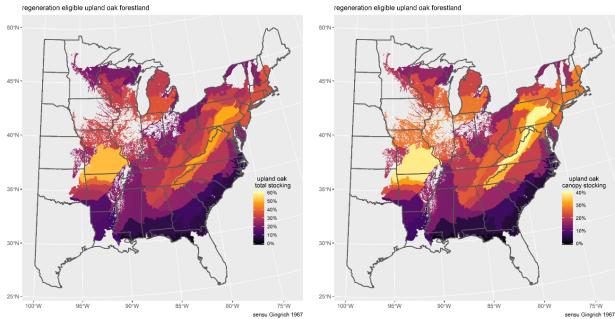



Figure 14. Upland oak total and upper canopy Gingrich stocking by ecological section, total (dbh ≥ 1 in.) [L], upper canopy (dominant or codominant) [R], eastern US regeneration eligible upland oak forestland, 2017.

Upland oaks together average a Gingrich stocking value of  $\approx$  29, which comprises about 27% of all species, with 14% of the total lower canopy and 35% of the total upper canopy. Upland oak upper canopy Gingrich stocking is  $\gtrsim$  30 for 7 large ecological sections (Figure 14), including the Ozark Highlands (223A), M221A, M221D, Northern Appalachian Piedmont (221D), Northern Unglaciated Allegheny Plateau (211G), Boston Mountains (M223A) and all Central Appalachian Mountain sections (M221) except the Northern Cumberland Mountains (M221C; 26). Upland oak upper canopy Gingrich stocking approached 40 in both the Northern Ridge and Valley and Ozark Highlands sections (M221A, 223A). Upland oak stocking can be considerably higher locally within an ecological section (Figure 15). Local scale visualizations also reinforce the broader Appalachian region and Interior Highlands of Missouri and Arkansas as hotspots for upland oak dominated forests, and highlight the Appalachian region as having a diverse suite of upper canopy upland oak species that are not white oak.

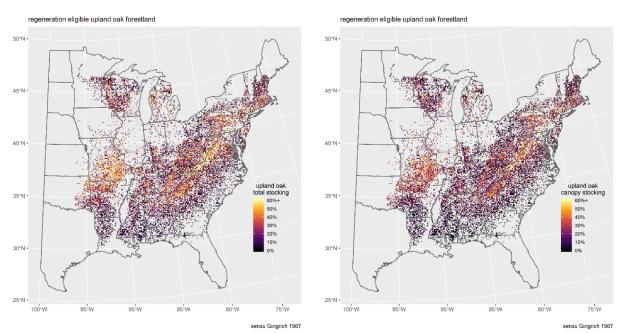



Figure 15. Upland oak total and upper canopy Gingrich stocking, local scale, total (dbh ≥ 1 in.) [L], upper canopy (dominant or codominant) [R], eastern US regeneration eligible upland oak forestland, 2017. Each cell represents ≈12,000 acres.

Table 4. Gingrich stocking by canopy position, species, and ecological section, (dbh ≥ 1 in.), eastern US regeneration eligible upland oak forestland, 2017. OVT = overtopped, INT = intermediate, CoD = codominant, DOM = dominant.

|        |                                             |     |        | ecies  |     | ι   | Jpland | doaks | 5        | White oak |     |     |     |  |
|--------|---------------------------------------------|-----|--------|--------|-----|-----|--------|-------|----------|-----------|-----|-----|-----|--|
| SCT_CD | Section Name                                | OVT | INT    | CoD    | DOM | OVT | INT    | CoD   | DOM      | OVT       | INT | CoD | DOM |  |
|        |                                             | Gi  | ngrich | Stocki | ng  |     |        |       | .% All s | species   |     |     |     |  |
| 211E   | St. Lawrence and Champlain Valley           | 36  | 21     | 72     | 3   | 7%  | 7%     | 21%   | 10%      | 1%        | 1%  | 3%  | 0%  |  |
| 211F   | Northern Glaciated Allegheny Plateau        | 31  | 15     | 74     | 2   | 7%  | 16%    | 36%   | 47%      | 2%        | 4%  | 7%  | 4%  |  |
| 211G   | Northern Unglaciated Allegheny Plateau      | 29  | 16     | 69     | 4   | 8%  | 17%    | 45%   | 46%      | 3%        | 5%  | 9%  | 11% |  |
| 2111   | Catskill Mountains                          | 40  | 13     | 84     | 2   | 6%  | 7%     | 29%   | 18%      | 1%        | 2%  | 2%  | 0%  |  |
| 212H   | Northern Lower Peninsula                    | 24  | 19     | 65     | 3   | 15% | 23%    | 33%   | 31%      | 6%        | 10% | 8%  | 9%  |  |
| 212K   | Western Superior Uplands                    | 17  | 21     | 65     | 3   | 7%  | 10%    | 23%   | 29%      | 2%        | 3%  | 2%  | 2%  |  |
| 212Q   | North Central Wisconsin Uplands             | 25  | 17     | 61     | 7   | 9%  | 15%    | 33%   | 46%      | 3%        | 5%  | 8%  | 16% |  |
| 212T   | Northern Green Bay Lobe                     | 26  | 21     | 64     | 7   | 6%  | 8%     | 19%   | 29%      | 1%        | 1%  | 2%  | 0%  |  |
| 212X   | Northern Highlands                          | 27  | 21     | 61     | 4   | 5%  | 10%    | 26%   | 26%      | 1%        | 1%  | 2%  | 3%  |  |
| 221A   | Lower New England                           | 34  | 14     | 77     | 3   | 9%  | 22%    | 37%   | 20%      | 3%        | 6%  | 6%  | 2%  |  |
| 221B   | Hudson Valley                               | 32  | 14     | 75     | 4   | 6%  | 12%    | 34%   | 26%      | 2%        | 2%  | 6%  | 3%  |  |
| 221D   | Northern Appalachian Piedmont               | 24  | 17     | 70     | 5   | 12% | 21%    | 44%   | 43%      | 5%        | 6%  | 10% | 13% |  |
| 221E   | Southern Unglaciated Allegheny Plateau      | 27  | 15     | 58     | 5   | 11% | 18%    | 38%   | 39%      | 4%        | 7%  | 13% | 12% |  |
| 221F   | Western Glaciated Allegheny Plateau         | 31  | 17     | 66     | 7   | 5%  | 6%     | 18%   | 52%      | 1%        | 1%  | 3%  | 18% |  |
| 221H   | Northern Cumberland Plateau                 | 34  | 15     | 58     | 2   | 11% | 23%    | 45%   | 43%      | 5%        | 9%  | 16% | 17% |  |
| 221J   | Central Ridge and Valley                    | 33  | 16     | 55     | 4   | 12% | 28%    | 42%   | 44%      | 4%        | 6%  | 8%  | 7%  |  |
| 222H   | Central Till Plains-Beech-Maple             | 31  | 15     | 55     | 10  | 5%  | 10%    | 25%   | 41%      | 2%        | 2%  | 7%  | 11% |  |
| 2221   | Erie and Ontario Lake Plain                 | 33  | 14     | 74     | 3   | 8%  | 10%    | 26%   | 48%      | 1%        | 1%  | 5%  | 0%  |  |
| 222J   | South Central Great Lakes                   | 26  | 18     | 62     | 7   | 12% | 25%    | 42%   | 37%      | 5%        | 10% | 11% | 8%  |  |
| 222K   | Southwestern Great Lakes Morainal           | 18  | 16     | 61     | 5   | 13% | 23%    | 40%   | 46%      | 6%        | 12% | 18% | 18% |  |
| 222L   | North Central U.S. Driftless and Escarpment | 22  | 23     | 50     | 4   | 10% | 25%    | 45%   | 33%      | 5%        | 10% | 14% | 6%  |  |
| 222M   | Minnesota & NE Iowa Morainal-Oak Savannah   | 23  | 16     | 65     | 5   | 6%  | 8%     | 27%   | 51%      | 2%        | 2%  | 7%  | 13% |  |
| 222R   | Wisconsin Central Sands                     | 17  | 15     | 54     | 12  | 13% | 27%    | 24%   | 40%      | 7%        | 13% | 8%  | 11% |  |
| 222U   | Lake Whittlesey Glaciolacustrine Plain      | 26  | 22     | 54     | 13  | 4%  | 11%    | 24%   | 34%      | 2%        | 6%  | 8%  | 20% |  |
| 223A   | Ozark Highlands                             | 20  | 16     | 54     | 5   | 23% | 40%    | 67%   | 66%      | 12%       | 17% | 24% | 19% |  |
| 223B   | Interior Low Plateau-Transition Hills       | 25  | 16     | 59     | 3   | 9%  | 23%    | 42%   | 34%      | 4%        | 7%  | 13% | 17% |  |
| 223D   | Interior Low Plateau-Shawnee Hills          | 24  | 16     | 61     | 4   | 9%  | 17%    | 32%   | 31%      | 4%        | 6%  | 14% | 16% |  |
| 223E   | Interior Low Plateau-Highland Rim           | 32  | 16     | 53     | 4   | 11% | 19%    | 37%   | 32%      | 5%        | 7%  | 14% | 11% |  |
| 223F   | Interior Low Plateau-Bluegrass              | 27  | 18     | 56     | 3   | 9%  | 12%    | 26%   | 45%      | 1%        | 3%  | 7%  | 14% |  |
| 223G   | Central Till Plains-Oak Hickory             | 22  | 14     | 57     | 5   | 7%  | 14%    | 42%   | 24%      | 5%        | 6%  | 20% | 7%  |  |
| 231A   | Southern Appalachian Piedmont               | 28  | 14     | 69     | 1   | 13% | 17%    | 24%   | 18%      | 6%        | 7%  | 10% | 8%  |  |
| 231B   | Coastal Plains-Middle                       | 34  | 14     | 66     | 2   | 12% | 16%    | 20%   | 21%      | 5%        | 7%  | 8%  | 10% |  |
| 231C   | Southern Cumberland Plateau                 | 31  | 11     | 67     | 1   | 15% | 24%    | 37%   | 17%      | 7%        | 8%  | 12% | 14% |  |
| 231D   | Southern Ridge and Valley                   | 30  | 12     | 65     | 1   | 17% | 24%    | 33%   | 39%      | 5%        | 6%  | 7%  | 7%  |  |
|        |                                             |     |        |        |     |     |        |       |          |           |     |     |     |  |

| SCT_CD | Section Name                                 | All species       |     |     |     | Upland oaks |     |         |     | White oak |     |     |     |
|--------|----------------------------------------------|-------------------|-----|-----|-----|-------------|-----|---------|-----|-----------|-----|-----|-----|
|        |                                              | OVT               | INT | CoD | DOM | OVT         | INT | CoD     | DOM | OVT       | INT | CoD | DOM |
|        |                                              | Gingrich Stocking |     |     |     |             |     | pecies. |     |           |     |     |     |
| 231E   | Mid Coastal Plains-Western                   | 28                | 9   | 67  | 1   | 10%         | 12% | 14%     | 26% | 5%        | 5%  | 6%  | 7%  |
| 231G   | Arkansas Valley                              | 21                | 10  | 58  | 2   | 17%         | 26% | 41%     | 35% | 5%        | 3%  | 6%  | 0%  |
| 231H   | Coastal Plains-Loess                         | 36                | 13  | 60  | 3   | 11%         | 16% | 22%     | 22% | 6%        | 6%  | 8%  | 9%  |
| 2311   | Central Appalachian Piedmont                 | 34                | 13  | 77  | 3   | 12%         | 20% | 27%     | 29% | 7%        | 9%  | 12% | 18% |
| 232A   | Northern Atlantic Coastal Plain              | 23                | 23  | 67  | 3   | 14%         | 25% | 38%     | 38% | 8%        | 12% | 16% | 12% |
| 232B   | Gulf Coastal Plains and Flatwoods            | 26                | 12  | 56  | 3   | 8%          | 10% | 9%      | 8%  | 3%        | 3%  | 4%  | 6%  |
| 232C   | Atlantic Coastal Flatwoods                   | 25                | 15  | 71  | 2   | 9%          | 8%  | 6%      | 5%  | 5%        | 4%  | 3%  | 5%  |
| 232F   | Coastal Plains and Flatwoods-Western Gulf    | 25                | 9   | 68  | 1   | 13%         | 19% | 12%     | 7%  | 5%        | 5%  | 4%  | 5%  |
| 232H   | Middle Atlantic Coastal Plains & Flatwoods   | 36                | 19  | 77  | 4   | 8%          | 14% | 20%     | 26% | 4%        | 7%  | 10% | 14% |
| 2321   | Northern Atlantic Coastal Flatwoods          | 27                | 24  | 78  | 2   | 5%          | 6%  | 8%      | 29% | 3%        | 3%  | 4%  | 0%  |
| 232J   | Southern Atlantic Coastal Plains & Flatwoods | 22                | 11  | 67  | 2   | 10%         | 11% | 11%     | 39% | 3%        | 3%  | 4%  | 119 |
| 232L   | Gulf Coastal Lowlands                        | 23                | 12  | 58  | 2   | 4%          | 10% | 3%      | 0%  | 3%        | 2%  | 2%  | 0%  |
| 234A   | Southern Mississippi Alluvial Plain          | 24                | 10  | 61  | 2   | 15%         | 5%  | 12%     | 0%  | 4%        | 2%  | 3%  | 0%  |
| 234D   | White and Black River Alluvial Plains        | 30                | 10  | 60  | 3   | 9%          | 15% | 25%     | 39% | 5%        | 8%  | 10% | 219 |
| 234E   | Arkansas Alluvial Plains                     | 23                | 7   | 71  | 2   | 12%         | 24% | 25%     | 0%  | 5%        | 10% | 6%  | 0%  |
| 251C   | Central Dissected Till Plains                | 20                | 15  | 53  | 7   | 10%         | 20% | 47%     | 46% | 5%        | 10% | 24% | 18% |
| 251D   | Central Till Plains and Grand Prairies       | 24                | 18  | 66  | 7   | 8%          | 20% | 40%     | 51% | 4%        | 5%  | 22% | 5%  |
| 251E   | Osage Plains                                 | 19                | 16  | 50  | 5   | 8%          | 22% | 36%     | 35% | 1%        | 4%  | 5%  | 0%  |
| M211B  | New England Piedmont                         | 41                | 17  | 77  | 4   | 5%          | 10% | 23%     | 19% | 1%        | 1%  | 1%  | 0%  |
| M221A  | Northern Ridge and Valley                    | 26                | 16  | 68  | 2   | 16%         | 27% | 57%     | 58% | 4%        | 5%  | 10% | 79  |
| M221B  | Allegheny Mountains                          | 29                | 18  | 69  | 2   | 10%         | 19% | 43%     | 28% | 3%        | 4%  | 8%  | 5%  |
| M221C  | Northern Cumberland Mountains                | 34                | 14  | 65  | 2   | 9%          | 20% | 39%     | 45% | 3%        | 6%  | 9%  | 79  |
| M221D  | Blue Ridge Mountains                         | 34                | 14  | 76  | 2   | 11%         | 24% | 45%     | 22% | 2%        | 4%  | 6%  | 49  |
| M223A  | Boston Mountains                             | 24                | 10  | 60  | 3   | 16%         | 26% | 51%     | 60% | 9%        | 11% | 22% | 23% |
| M231A  | Ouachita Mountains                           | 21                | 13  | 64  | 1   | 22%         | 32% | 28%     | 25% | 11%       | 13% | 12% | 119 |
|        | Area-weighted average                        | 28                | 15  | 65  | 3   | 11%         | 20% | 35%     | 37% | 4%        | 7%  | 10% | 119 |

Saplings of all species (dbh 1-3 in.) average 310 trees per acre (Table 5) but white oaks average only 8 trees per acre (< 3%), and upland oaks 23 (> 7%). White oak saplings average  $\leq$  1 trees per acre in eleven ecological sections and < 20 in all sections (Figure 16). The highest white oak sapling relative abundance is in the Wisconsin Central Sands (222R, 9%), Ozark Highlands, and Ouachita Mountains (223A, M23A; 7%). Upland oak saplings are generally more abundant than white oak alone, but still relatively scarce (Figure 17), and appears to be driven by white oak.

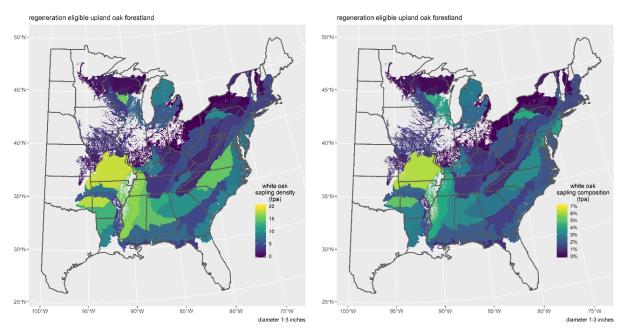



Figure 16. White oak sapling abundance and relative abundance by ecological section, trees per acre (1-3 in. dbh) [L], % trees per acre (1-3 in. dbh) [R], eastern US regeneration eligible upland oak forestland, 2017.

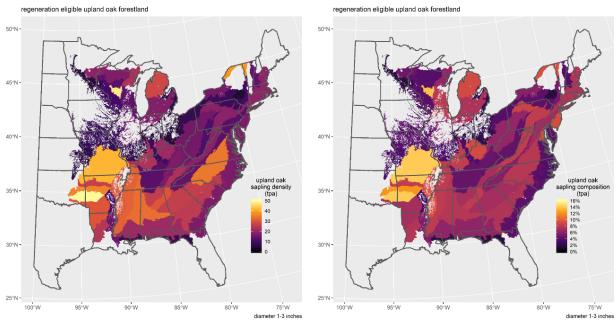



Figure 17. Upland oak sapling abundance and relative abundance by ecological section, trees per acre (1-3 in. dbh) [L], % trees per acre (1-3 in. dbh) [R], eastern US regeneration eligible upland oak forestland, 2017

Seedling abundance is variable, ranging from about 900-4000 per acre for all species across all ecological sections with an average of 2110 (Table 5). White oaks average 98 seedlings per acre (<5%), but range  $\approx$  3-279 trees per acre across sections (Figure 18). White oaks make up < 2% of seedlings in 25 ecological sections (Figure 19) and >10% in 5 sections with the largest shares in the Central Till Plains and Grand Prairies (251D; 29%) and Ozark Highlands (223A; 18%).

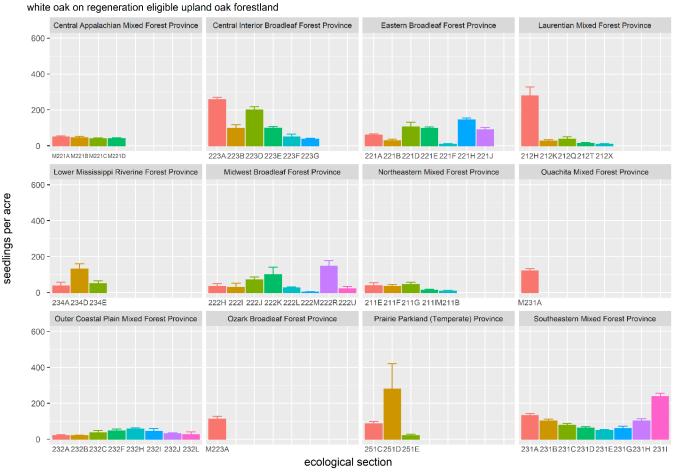



Figure 18. White oak seedling abundance by ecological section, trees per acre (dbh < 1 in; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Errorbars depict sampling error (≈ 68% confidence or 1 standard deviation). Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

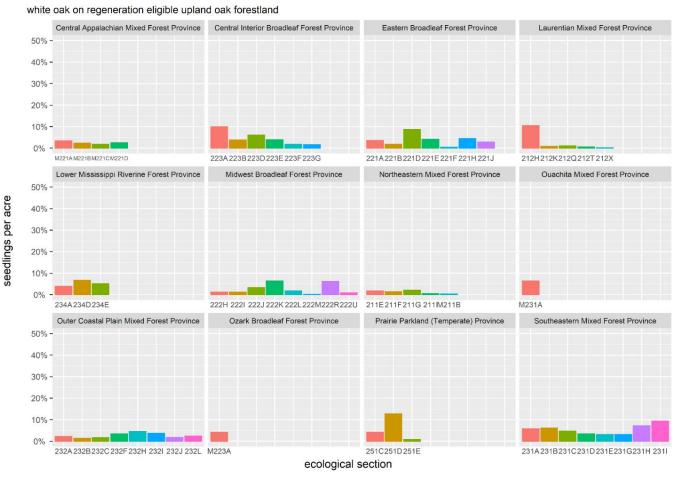



Figure 19. White oak seedling relative abundance by ecological section, % trees per acre (dbh < 1 in.; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

Upland oak seedlings range from about 44-591 across sections and average 271 seedlings per acre (13%) (Table 5). Only 8 ecological sections averaged >400 upland oak seedlings per acre (Figure 20) including the Shawnee Hills [223D], Boston Mountains [M223A], Central Appalachian Piedmont [231I], Northern Cumberland Plateau [221H], Arkansas Valley [231G], Ozark Highlands [223A], Wisconsin Central Sands [222R], Northern Lower Peninsula [212H]. Upland oaks make up ≥ 20% of the seedling population in 6 ecological sections (Wisconsin Central Sands [222R], Northern Lower Peninsula [212H], Arkansas Valley [231G], Ozark Highlands [223A], Ouachita Mountains [M231A], Arkansas Alluvial Plains [234E]), but < 5% in 9 sections (Figure 21).

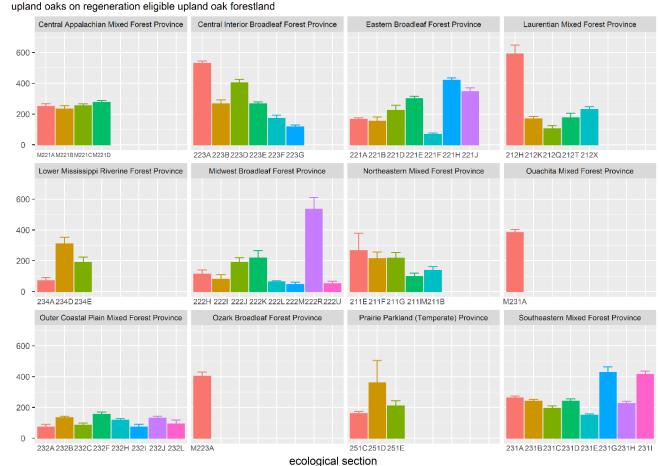
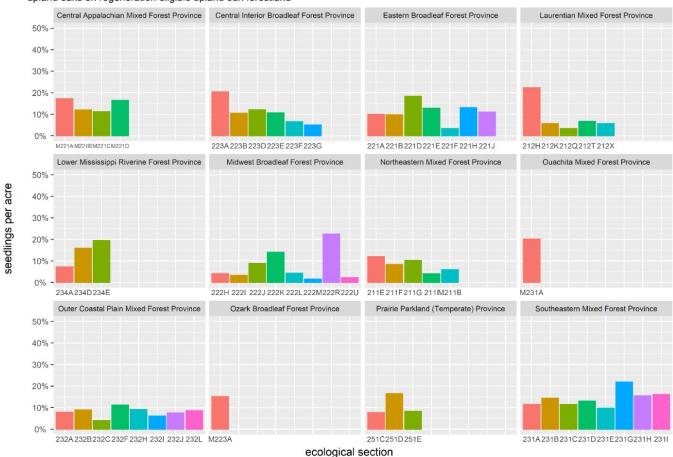




Figure 20. Upland oak seedling abundance by ecological section, trees per acre (dbh < 1 in; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Errorbars depict sampling error (≈ 68% confidence or 1 standard deviation). Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.



upland oaks on regeneration eligible upland oak forestland

Figure 21. Upland oak seedling relative abundance by ecological section, % trees per acre (dbh < 1 in.; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

Even within an ecological section, seedling and sapling presence and abundance is often spatially variable, suggesting that more localized, stand-level drivers and adaptive silviculture will be important determinants of stand development and regeneration outcomes for white (Figure 22) and upland oaks (Figure 23).

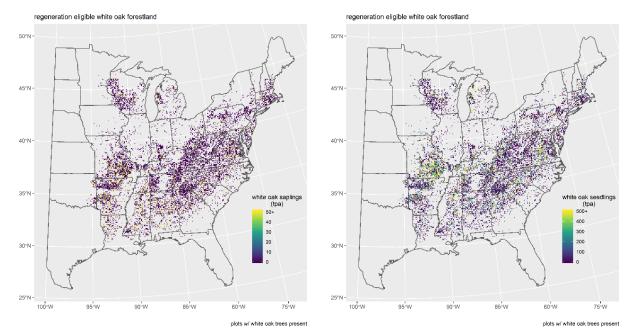



Figure 22. White oak sapling and seedling abundance, local scale, trees per acre, saplings (dbh 1-3 in.) [L], seedlings (dbh < 1 in; height ≥ 12 in.) [R], eastern US regeneration eligible white oak forestland, 2017. Each cell represents ≈ 12,000 acres.

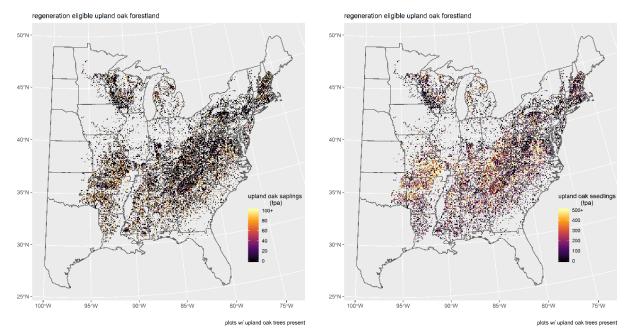



Figure 23. Upland oak sapling and seedling abundance, local scale, trees per acre, saplings (dbh 1-3 in.) [L], seedlings (dbh < 1 in; height ≥ 12 in.) [R], eastern US regeneration eligible white oak forestland, 2017. Each cell represents ≈ 12,000 acres.

Upland oaks and many other hardwood species can regenerate from vegetative reproduction, also known as sprouting. Sprouting is an important reproduction source for upland oaks and sprouts are often highly competitive during the regeneration process. While oak sprouts can alleviate some deficit in seedlings and sapling populations in a regeneration event, not all stems will sprout. Oak sprouting probabilities tend to decrease with increasing stem diameter (Figure 24). Across the range, an average of 7 potential white oak sprouts (dbh  $\geq$  3 in.) per acre may be available to bolster seedling and sapling populations (Table 5). Upland oaks average 32 potential sprouts per acre. The abundance of potential sprouts for both white and upland oaks varied considerably across ecological sections (Figure 25), but white oak potential sprouts were generally highest in the broader Interior Highlands region of Missouri and Arkansas (and North Atlantic Coastal Plain [232A], whereas other upland oaks potential sprouts were relatively more abundant and the broader Appalachian region. The variable, but relatively higher abundance of potential sprouts in these regions is further highlighted at local scale (Figure 26).

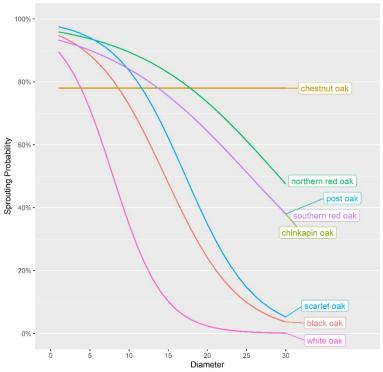



Figure 24. Upland oak sprouting probability estimates by species and diameter<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> Estimates based on models used by USFS Forest Vegetation Simulator, Southern Variant (Keyser 2008)

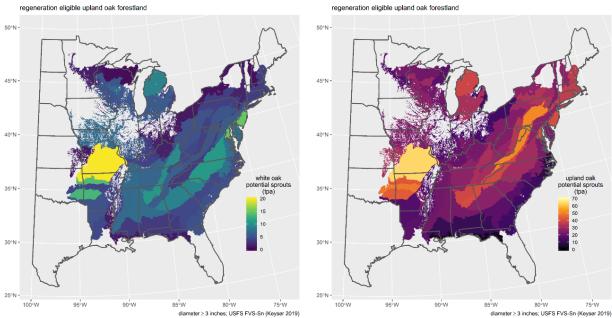



Figure 25. White and upland oak potential sprout abundance by ecological section, potential trees per acre (dbh  $\ge$  3 in.), white oak [L], upland oak [R]<sup>1</sup>, eastern US regeneration eligible upland oak forestland, 2017.

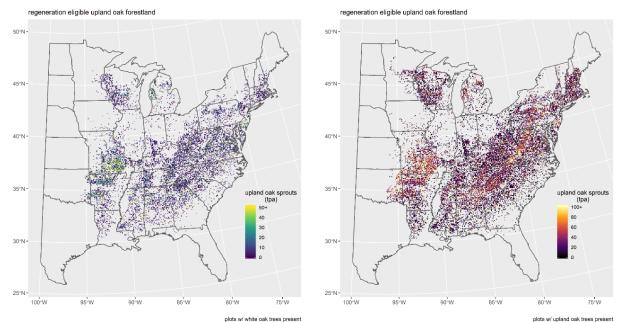
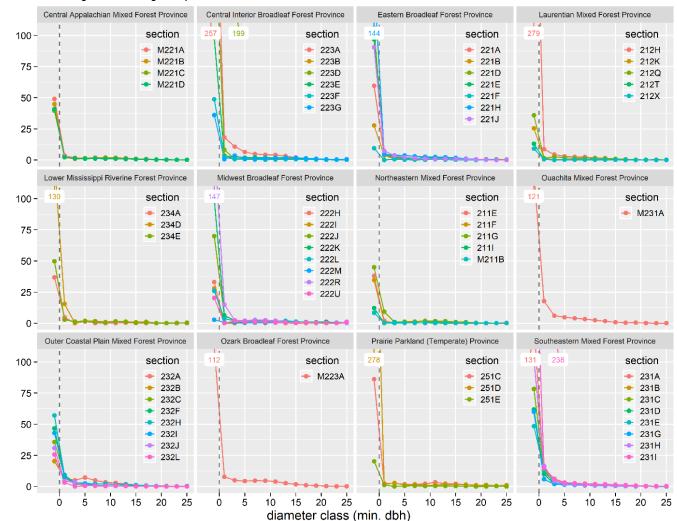


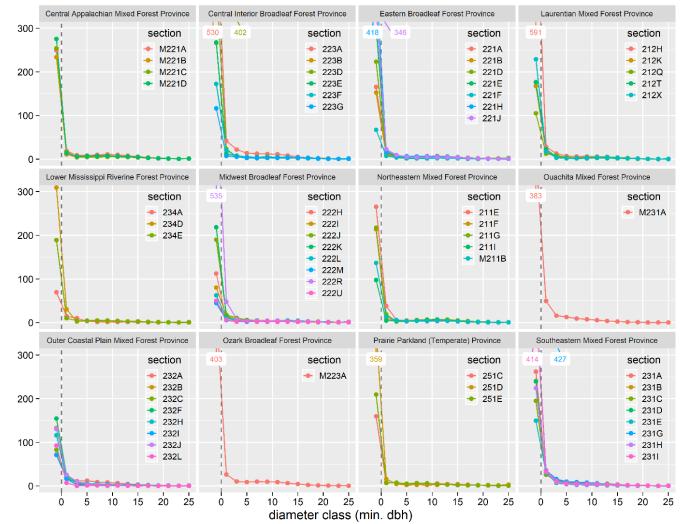

Figure 26. White and upland oak potential sprout abundance, local scale, potential trees per acre (dbh ≥ 3 in.), white oak [L], upland oak [R], eastern US regeneration eligible upland oak forestland, 2017. Each cell represents ≈12,000 acres.

<sup>&</sup>lt;sup>1</sup> Estimates based on models used by USFS Forest Vegetation Simulator, Southern Variant (Keyser 2008)


|        |                                                    | -       | Saplings |       |         | Seedlings |       | Potential | Sprouts |
|--------|----------------------------------------------------|---------|----------|-------|---------|-----------|-------|-----------|---------|
| SCT_CD | Section Name                                       | All     | Upland   | White | All     | Upland    | White | Upland    | White   |
| 301_00 | Section Name                                       | species | oaks     | oak   | species | oaks      | oak   | oaks      | oak     |
|        |                                                    |         |          |       | 1       | er acre   |       |           |         |
| 211E   | St. Lawrence and Champlain Valley                  | 404     | 38       | 2     | 2,203   | 265       | 38    | 25        | 1       |
| 211F   | Northern Glaciated Allegheny Plateau               | 209     | 9        | 1     | 2,540   | 214       | 35    | 33        | 4       |
| 211G   | Northern Unglaciated Allegheny Plateau             | 217     | 19       | 9     | 2,112   | 217       | 45    | 30        | 4       |
| 2111   | Catskill Mountains                                 | 247     | 4        | 0     | 2,440   | 97        | 12    | 30        | 2       |
| 212H   | Northern Lower Peninsula                           | 306     | 28       | 9     | 2,650   | 591       | 279   | 39        | 9       |
| 212K   | Western Superior Uplands                           | 390     | 19       | 1     | 2,967   | 168       | 25    | 23        | 1       |
| 212Q   | North Central Wisconsin Uplands                    | 318     | 13       | 2     | 3,068   | 105       | 36    | 29        | 5       |
| 212T   | Northern Green Bay Lobe                            | 358     | 23       | 1     | 2,638   | 176       | 13    | 18        | 0       |
| 212X   | Northern Highlands                                 | 447     | 17       | 1     | 4,003   | 229       | 9     | 22        | 0       |
| 221A   | Lower New England                                  | 256     | 19       | 4     | 1,650   | 165       | 60    | 36        | 4       |
| 221B   | Hudson Valley                                      | 203     | 11       | 4     | 1,550   | 152       | 28    | 24        | 2       |
| 221D   | Northern Appalachian Piedmont                      | 180     | 12       | 5     | 1,218   | 223       | 106   | 26        | 6       |
| 221E   | Southern Unglaciated Allegheny Plateau             | 248     | 16       | 5     | 2,343   | 301       | 97    | 25        | 5       |
| 221F   | Western Glaciated Allegheny Plateau                | 194     | 8        | 0     | 1,937   | 67        | 9     | 14        | 1       |
| 221H   | Northern Cumberland Plateau                        | 374     | 17       | 5     | 3,192   | 418       | 144   | 32        | 10      |
| 221J   | Central Ridge and Valley                           | 321     | 23       | 7     | 3,126   | 346       | 90    | 31        | 6       |
| 222H   | Central Till Plains-Beech-Maple                    | 245     | 5        | 0     | 2,740   | 113       | 33    | 15        | 1       |
| 2221   | Erie and Ontario Lake Plain                        | 271     | 16       | 0     | 2,377   | 80        | 28    | 27        | 1       |
| 222J   | South Central Great Lakes                          | 237     | 18       | 6     | 2,141   | 190       | 70    | 32        | 6       |
| 222K   | Southwestern Great Lakes Morainal                  | 166     | 13       | 6     | 1,555   | 218       | 100   | 22        | 6       |
| 222L   | North Central U.S. Driftless and Escarpment        | 252     | 10       | 4     | 1,455   | 63        | 26    | 26        | 5       |
| 222M   | Minnesota and Northeast Iowa Morainal-Oak Savannah | 295     | 5        | 1     | 2,884   | 44        | 3     | 17        | 2       |
| 222R   | Wisconsin Central Sands                            | 345     | 48       | 15    | 2,370   | 535       | 147   | 22        | 7       |
| 222U   | Lake Whittlesey Glaciolacustrine Plain             | 293     | 7        | 0     | 2,227   | 50        | 20    | 13        | 4       |
| 223A   | Ozark Highlands                                    | 296     | 42       | 18    | 2,603   | 530       | 257   | 64        | 20      |
| 223B   | Interior Low Plateau-Transition Hills              | 236     | 9        | 4     | 2,546   | 266       | 98    | 23        | 3       |
| 223D   | Interior Low Plateau-Shawnee Hills                 | 281     | 23       | 8     | 3,322   | 402       | 199   | 20        | 4       |
| 223E   | Interior Low Plateau-Highland Rim                  | 283     | 13       | 3     | 2,499   | 267       | 98    | 27        | 7       |
| 223F   | Interior Low Plateau-Bluegrass                     | 232     | 21       | 2     | 2,625   | 173       | 49    | 22        | 2       |
| 223G   | Central Till Plains-Oak Hickory                    | 217     | 7        | 1     | 2,280   | 116       | 36    | 17        | 6       |
| 231A   | Southern Appalachian Piedmont                      | 371     | 26       | 10    | 2,280   | 262       | 131   | 26        | 9       |
| 231B   | Coastal Plains-Middle                              | 426     | 33       | 14    | 1,669   | 240       | 102   | 23        | 7       |
| 231C   | Southern Cumberland Plateau                        | 358     | 26       | 12    | 1,700   | 195       | 78    | 39        | 10      |
| 231D   | Southern Ridge and Valley                          | 374     | 30       | 10    | 1,830   | 240       | 62    | 40        | 6       |
| 231E   | Mid Coastal Plains-Western                         | 426     | 30       | 13    | 1,529   | 149       | 48    | 16        | 5       |
| 231G   | Arkansas Valley                                    | 295     | 36       | 6     | 1,951   | 427       | 60    | 48        | 4       |
| 231H   | Coastal Plains-Loess                               | 390     | 32       | 16    | 1,441   | 224       | 102   | 22        | 7       |
|        |                                                    | 438     | 34       | 15    | 2,574   | 414       | 238   |           |         |
| 2311   | Central Appalachian Piedmont                       | 430     | 54       | 15    | 2,374   | 414       | 200   | 30        | 11      |

## Table 5. Reproduction abundance by type, species, and ecological section, eastern US regeneration eligibleupland oak forestland, 2017.

|        | · · · · · · · · · · · · · · · · · · ·          | Saplings |        |       |         | Seedlings |       | Potential | Sprouts |
|--------|------------------------------------------------|----------|--------|-------|---------|-----------|-------|-----------|---------|
| SCT_CD | Section Name                                   | All      | Upland | White | All     | Upland    | White | Upland    | White   |
| 301_00 | Section Marile                                 | species  | oaks   | oak   | species | oaks      | oak   | oaks      | oak     |
|        |                                                |          |        |       | trees p | er acre   |       |           |         |
| 232B   | Gulf Coastal Plains and Flatwoods              | 338      | 21     | 7     | 1,469   | 132       | 20    | 11        | 3       |
| 232C   | Atlantic Coastal Flatwoods                     | 410      | 17     | 9     | 2,079   | 83        | 36    | 13        | 5       |
| 232F   | Coastal Plains and Flatwoods-Western Gulf      | 315      | 24     | 9     | 1,382   | 154       | 47    | 18        | 4       |
| 232H   | Middle Atlantic Coastal Plains and Flatwoods   | 423      | 17     | 8     | 1,268   | 116       | 57    | 24        | 7       |
| 2321   | Northern Atlantic Coastal Flatwoods            | 445      | 16     | 8     | 1,161   | 71        | 43    | 9         | 4       |
| 232J   | Southern Atlantic Coastal Plains and Flatwoods | 336      | 25     | 4     | 1,726   | 131       | 31    | 18        | 4       |
| 232L   | Gulf Coastal Lowlands                          | 374      | 7      | 3     | 1,067   | 92        | 26    | 3         | 1       |
| 234A   | Southern Mississippi Alluvial Plain            | 265      | 15     | 5     | 962     | 70        | 37    | 17        | 1       |
| 234D   | White and Black River Alluvial Plains          | 328      | 30     | 15    | 1,946   | 309       | 130   | 17        | 4       |
| 234E   | Arkansas Alluvial Plains                       | 321      | 10     | 3     | 970     | 189       | 50    | 23        | 4       |
| 251C   | Central Dissected Till Plains                  | 211      | 8      | 3     | 2,079   | 160       | 86    | 24        | 7       |
| 251D   | Central Till Plains and Grand Prairies         | 247      | 16     | 2     | 2,182   | 359       | 278   | 15        | 5       |
| 251E   | Osage Plains                                   | 195      | 7      | 1     | 2,526   | 209       | 20    | 31        | 1       |
| M211B  | New England Piedmont                           | 358      | 14     | 0     | 2,289   | 136       | 8     | 27        | 1       |
| M221A  | Northern Ridge and Valley                      | 227      | 19     | 3     | 1,442   | 249       | 49    | 51        | 5       |
| M221B  | Allegheny Mountains                            | 254      | 11     | 2     | 1,949   | 234       | 45    | 34        | 4       |
| M221C  | Northern Cumberland Mountains                  | 358      | 16     | 2     | 2,273   | 254       | 40    | 28        | 4       |
| M221D  | Blue Ridge Mountains                           | 243      | 14     | 2     | 1,671   | 275       | 41    | 40        | 3       |
| M223A  | Boston Mountains                               | 318      | 26     | 8     | 2,667   | 403       | 112   | 43        | 14      |
| M231A  | Ouachita Mountains                             | 349      | 49     | 18    | 1,894   | 383       | 121   | 43        | 13      |
|        | Area-weighted Average                          | 310      | 23     | 8     | 2,110   | 271       | 98    | 32        | 7       |


## TASK 4: COMPARE MID- AND UNDERSTORY POPULATION TO CANOPY OF REGENERATION ELIGIBLE AREAS

Results from Task 3 indicate that the current oak domination of forests that occurs in many places is a product of relatively few (numerically), but large oak trees. Although white oaks become increasingly prevalent as large trees, saplings are scarce. Numerically, white (Figure 27) and upland oaks decrease with increasing size (diameter), which is an outcome generally expected (Figure 28). However, both white (Figure 29) and upland oak relative abundance increases with diameter class, and, in many cases, upland oak is  $\gtrsim$  50% of stems per diameter class over 15 in. in several ecological sections (Figure 30).



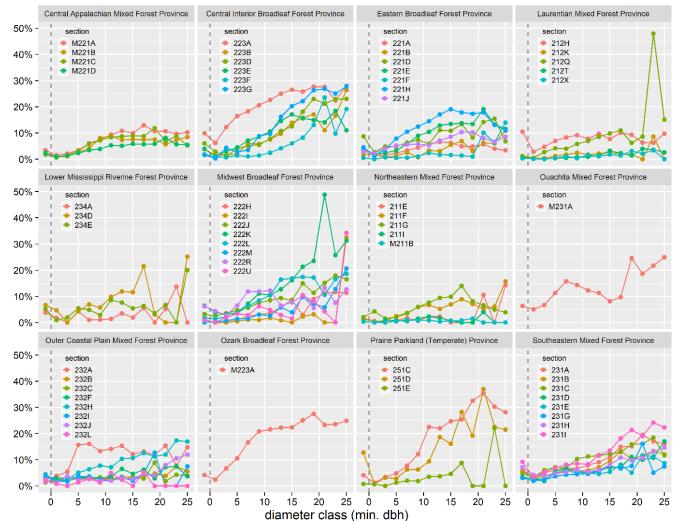

white oak on regeneration eligible upland oak forestland

Figure 27. White oak abundance by diameter class and ecological section, stems per acre, eastern US regeneration eligible upland oak forestland, 2017. Data left of the broken vertical line (x=0) represent seedlings. Two-inch diameter classes were used, starting at one-inch and classes are labeled according to the minimum diameter included. All trees with dbh ≥ 25 in. are included in the 25 in. class. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.



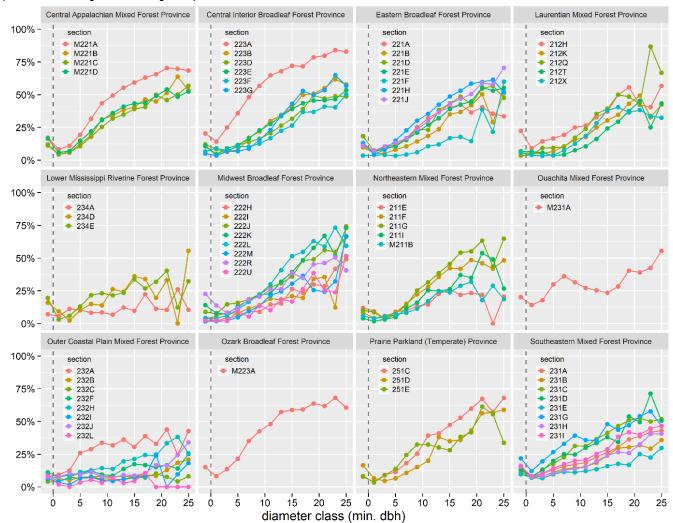
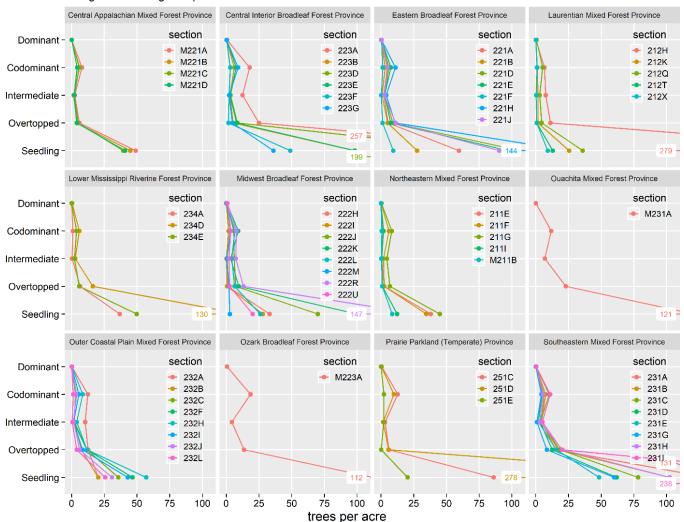

upland oaks on regeneration eligible upland oak forestland

Figure 28. Upland oak abundance by diameter class and ecological section, trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Data left of the broken vertical line (x=0) represent seedlings. Two-inch diameter classes were used, starting at one-inch and classes are labeled according to the minimum diameter included. All trees with dbh ≥ 25 in. are included in the 25 in. class. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

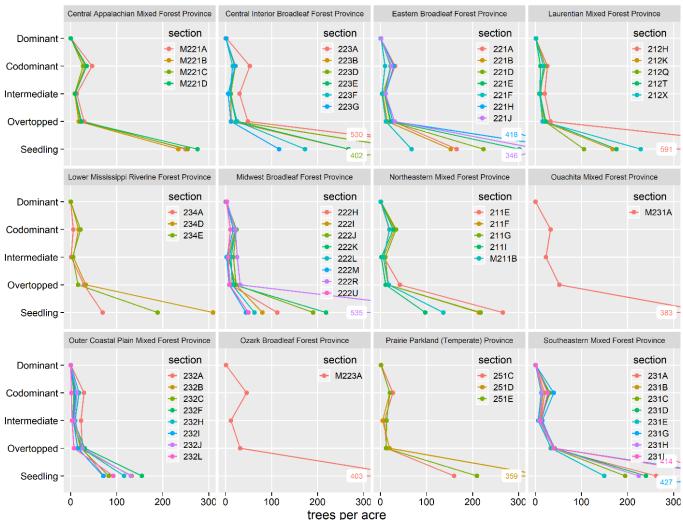


#### white oak on regeneration eligible upland oak forestland


Figure 29. White oak relative abundance by diameter class and ecological section, % trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Data left of the broken vertical line (x=0) represent seedlings. Two-inch diameter classes were used, starting at one-inch and classes are labeled according to the minimum diameter included. All trees with dbh  $\ge$  25 in. are included in the 25 in. class. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.



#### upland oaks on regeneration eligible upland oak forestland


Figure 30. Upland oak relative abundance by diameter class and ecological section , % trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Data left of the broken vertical line (x=0) represent seedlings. Two-inch diameter classes were used, starting at one-inch and classes are labeled according to the minimum diameter included. All trees with dbh  $\ge$  25 in. are included in the 25 in. class. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.

Across many ecological sections white (Figure 31) and upland oaks (Figure 32) also exhibit considerable decreases in mean abundance from the seedling layer to overtopped canopy positions, which is to be expected, and typically further decrease between the overtopped and intermediate canopy positions. Oaks are usually as abundant, but often more abundant as a codominant compared to other canopy positions. There is also a pattern of increasing white (Figure 33) and upland oak (Figure 34) relative abundance with increasing canopy position as well. Across the range, upland oaks average 8 and 14% of overtopped and intermediate trees per acre, respectively, but 25% of stems in the upper canopy (codominant and dominant). White oak averages about 8 trees per acre or 7% of all upper canopy trees across the range.



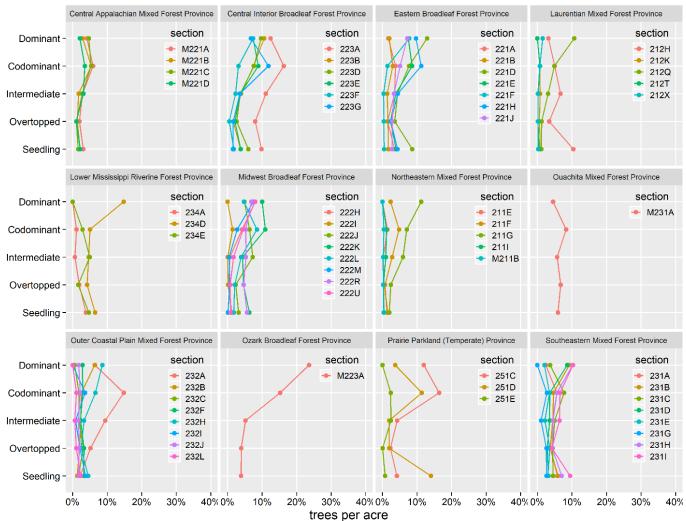

white oak on regeneration eligible upland oak forestland

Figure 31. White oak abundance by canopy position and ecological section, trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.



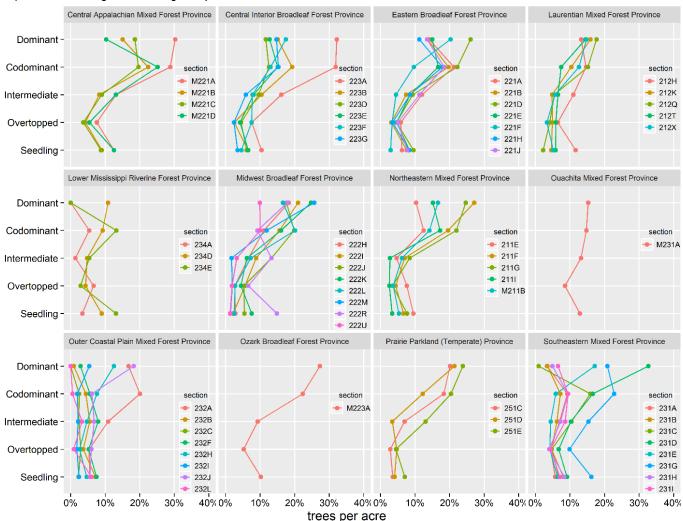

upland oaks on regeneration eligible upland oak forestland

Figure 32. Upland oak abundance by canopy position and ecological section, trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 4.



#### white oak on regeneration eligible upland oak forestland

Figure 33. White oak relative abundance by canopy position and ecological section, % trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 2.



#### upland oaks on regeneration eligible upland oak forestland

Figure 34. Upland oak relative abundance by canopy position and ecological section, % trees per acre, eastern US regeneration eligible upland oak forestland, 2017. Panel positions and colors within a panel correspond to the areas highlighted in Figure 2.

In all but one section, Minnesota & NE Iowa Morainal-Oak Savannah [222M], white oak abundance is higher for seedling than the upper canopy (Figure 35), but the pattern is reversed for relative abundance (Figure 36). Upland oak seedlings also tend to be numerically greater than the upper canopy upland oaks but not in relative abundance (Figure 37, Figure 38).

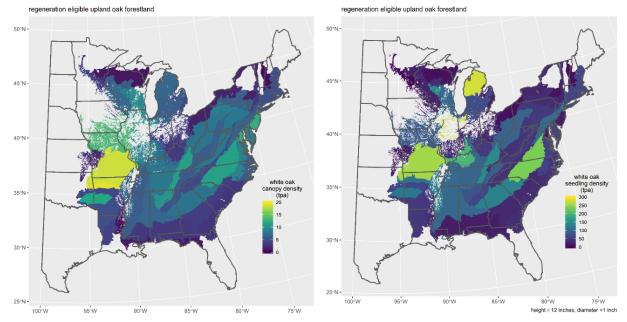



Figure 35. White oak upper canopy and seedling abundance by ecological section, trees per acre, upper canopy (dominant or codominant) [L], seedlings (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible upland oak forestland, 2017.

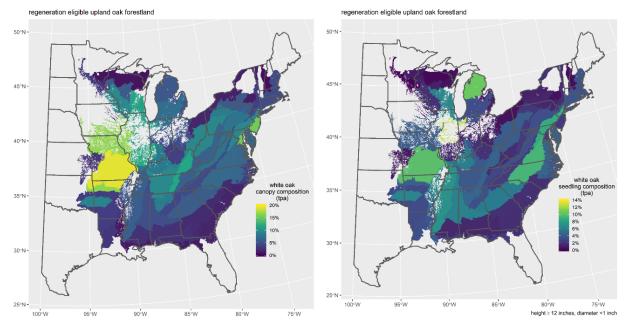



Figure 36. White oak upper canopy and seedling relative abundance by ecological section, % trees per acre, upper canopy (dominant or codominant) [L], seedlings (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible upland oak forestland, 2017.

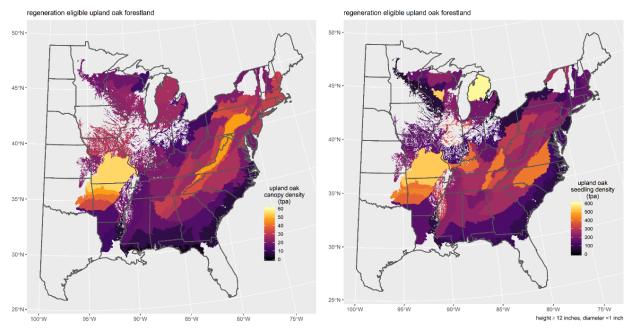



Figure 37. Upland oak upper canopy and seedling abundance by ecological section, trees per acre, upper canopy (dominant or codominant) [L], seedlings (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible upland oak forestland, 2017.

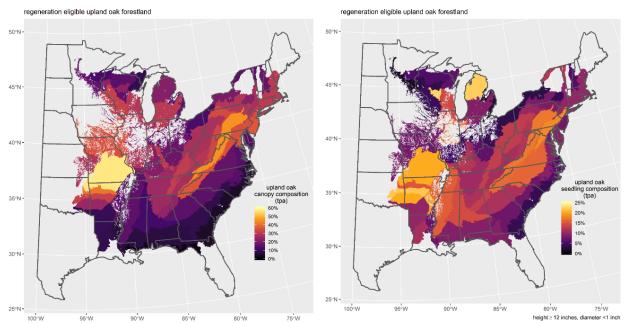



Figure 38. Upland oak upper canopy and seedling relative abundance by ecological section, % trees per acre, upper canopy (dominant or codominant) [L], seedlings (dbh < 1 in.; height  $\ge$  12 in.) [R], eastern US regeneration eligible upland oak forestland, 2017.

#### TASK 5: HIGHLIGHT AREAS OF REGENERATION CONCERN

In many places, the next generation of white oak in mature stands is not clearly established and no section is immune to regeneration concerns. For example, while the Ozark Highlands [223A] has the 2nd lowest proportion of regeneration eligible white oak acres without seedlings ('only' 37%), saplings are overwhelmingly absent (81% of acres). This highlights that regeneration concerns can be different in kind, those where bottlenecks appear in seedling establishment vs those where bottlenecks appear during canopy recruitment. An estimated 60% of regeneration eligible white oak acres have no white oak seedlings present and about 87% have no white oak saplings present (Figure 39).

Limited canopy recruitment of saplings is a concern across the range, especially for white oak (Figure 40) as saplings were absent on no fewer than 72% of regeneration eligible white oak acres in any ecological section (Table 6). Among the larger sections (≥ 1 million regeneration eligible acres), white oak establishment concerns were relatively higher (≥ 75% seedling-less acres) in the Driftless and Escarpment [222L], Gulf Coastal Plains and Flatwoods [232B], and Central Appalachians [M221A, B, D]. In contrast, establishment concerns were relatively lower (≤ 50% seedling-less acres) in the Ozark Highlands [223A], Shawnee Hills [223D], Central Appalachian Piedmont [231I], Ouachita Mountains [M231A], and Northern Lower Peninsula [212H].

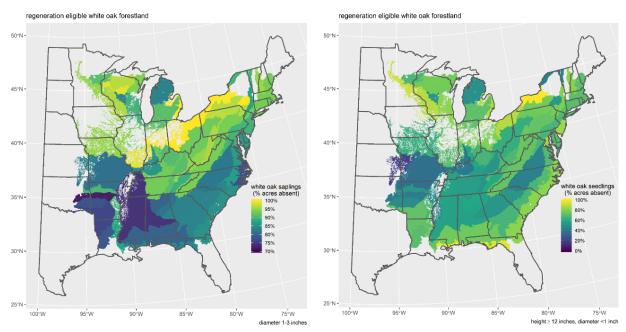



Figure 39. White oak reproduction absence by type and ecological section, % forestland with white oak trees present but, saplings absent (dbh 1-3 in.) [L], seedlings absent (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible white oak forestland, 2017.

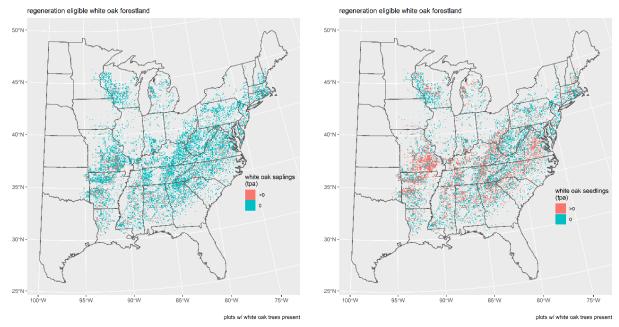



Figure 40. White oak reproduction presence/absence by type, local scale, saplings (dbh 1-3 in.) [L], seedlings (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible white oak forestland, 2017. Each cell represents ≈ 12,000 acres.

As with white oak, upland oak regeneration concerns are pervasive. An estimated 71 million acres, or about 54% of regeneration eligible upland oak forestland had upland oaks present as trees but absent as seedlings. Only 16 ecological sections had upland oak seedlings present on a majority (≥ 51%) of acres (Figure 41). Upland oak establishment concerns were relatively higher (≥ 75% seedling-less acres) on 16 ecological sections with the Driftless and Escarpment [222L], Atlantic Coastal Flatwoods [232C], Middle Atlantic Coastal Plains and Flatwoods [232H], Northern Appalachian Piedmont [221D], and South Central Great Lakes [222J] among the larger sections (≥ 1 million regeneration eligible acres).

Limited canopy recruitment of upland oak saplings is also of major concern across the range (Figure 42). Upland oak saplings were absent on over 109 million regeneration eligible acres (83%) and no fewer than 69% of acres in any ecological section.

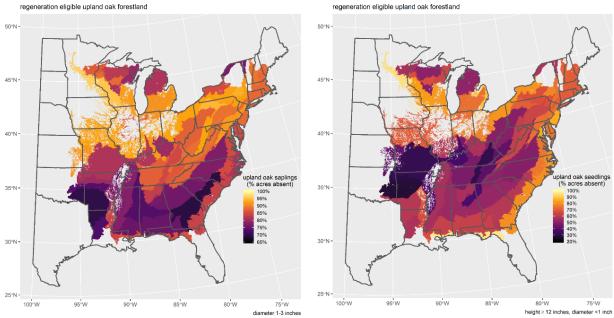



Figure 41. Upland oak reproduction absence by type and ecological section, % forestland with upland oak trees present but, saplings absent (dbh 1-3 in.) [L], seedlings absent (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible upland oak forestland, 2017.

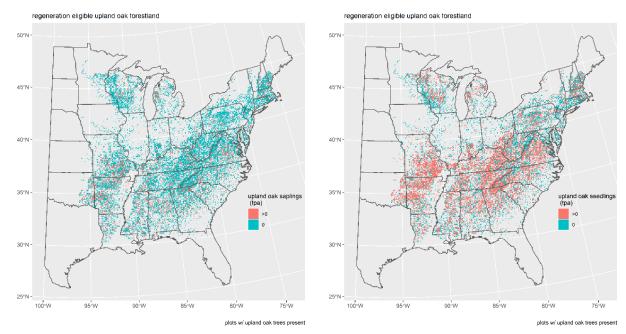
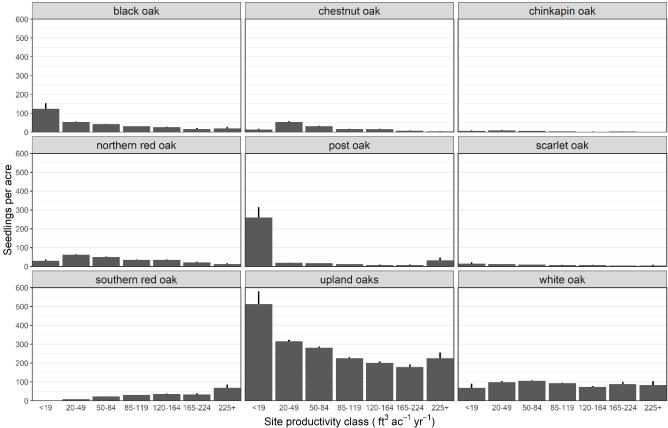



Figure 42. Upland oak reproduction presence/absence by type, local scale, saplings (dbh 1-3 in.) [L], seedlings (dbh < 1 in.; height ≥ 12 in.) [R], eastern US regeneration eligible upland oak, 2017. Each cell represents ≈ 12,000 acres.

 Table 6. Area of reproduction absence by type, species, and ecological section, eastern US regeneration eligible

 forestland, 2017.

|        |                                                    | Regeneration eligible forestland |              | Saplings      | Saplings absent |               | absent       |
|--------|----------------------------------------------------|----------------------------------|--------------|---------------|-----------------|---------------|--------------|
| SCT_CD | Section Name                                       | Upland<br>oak                    | White<br>oak | Upland<br>oak | White<br>oak    | Upland<br>oak | White<br>oak |
|        |                                                    | acres (r                         | millions)    | <u>.</u>      | % spe           | cies total    | <u>.</u>     |
| 211E   | St. Lawrence and Champlain Valley                  | 0.24                             | 0.08         | 77%           | 90%             | 57%           | 44%          |
| 211F   | Northern Glaciated Allegheny Plateau               | 2.02                             | 0.93         | 93%           | 96%             | 67%           | 78%          |
| 211G   | Northern Unglaciated Allegheny Plateau             | 1.65                             | 0.81         | 94%           | 97%             | 70%           | 76%          |
| 2111   | Catskill Mountains                                 | 0.59                             | 0.07         | 94%           | 100%            | 78%           | 54%          |
| 212H   | Northern Lower Peninsula                           | 2.13                             | 1.10         | 81%           | 83%             | 51%           | 50%          |
| 212K   | Western Superior Uplands                           | 0.68                             | 0.12         | 87%           | 91%             | 56%           | 67%          |
| 212Q   | North Central Wisconsin Uplands                    | 0.48                             | 0.27         | 88%           | 99%             | 67%           | 77%          |
| 212T   | Northern Green Bay Lobe                            | 0.46                             | 0.07         | 80%           | 94%             | 64%           | 77%          |
| 212X   | Northern Highlands                                 | 0.96                             | 0.12         | 83%           | 97%             | 50%           | 78%          |
| 221A   | Lower New England                                  | 5.44                             | 2.85         | 88%           | 94%             | 70%           | 70%          |
| 221B   | Hudson Valley                                      | 0.90                             | 0.39         | 92%           | 88%             | 74%           | 80%          |
| 221D   | Northern Appalachian Piedmont                      | 1.25                             | 0.70         | 92%           | 90%             | 74%           | 66%          |
| 221E   | Southern Unglaciated Allegheny Plateau             | 8.00                             | 5.28         | 87%           | 93%             | 49%           | 62%          |
| 221F   | Western Glaciated Allegheny Plateau                | 0.96                             | 0.26         | 93%           | 100%            | 81%           | 88%          |
| 221H   | Northern Cumberland Plateau                        | 4.35                             | 3.45         | 85%           | 91%             | 32%           | 52%          |
| 221J   | Central Ridge and Valley                           | 1.43                             | 0.92         | 86%           | 89%             | 40%           | 60%          |
| 222H   | Central Till Plains-Beech-Maple                    | 0.86                             | 0.29         | 93%           | 100%            | 77%           | 80%          |
| 2221   | Erie and Ontario Lake Plain                        | 0.36                             | 0.10         | 85%           | 100%            | 80%           | 100%         |
| 222J   | South Central Great Lakes                          | 1.43                             | 0.75         | 91%           | 91%             | 74%           | 71%          |
| 222K   | Southwestern Great Lakes Morainal                  | 0.70                             | 0.44         | 92%           | 89%             | 81%           | 82%          |
| 222L   | North Central U.S. Driftless and Escarpment        | 2.06                             | 1.35         | 95%           | 96%             | 82%           | 89%          |
| 222M   | Minnesota and Northeast Iowa Morainal-Oak Savannah | 0.37                             | 0.09         | 96%           | 95%             | 94%           | 92%          |
| 222R   | Wisconsin Central Sands                            | 0.47                             | 0.29         | 81%           | 84%             | 49%           | 52%          |
| 222U   | Lake Whittlesey Glaciolacustrine Plain             | 0.31                             | 0.13         | 92%           | 100%            | 88%           | 88%          |
| 223A   | Ozark Highlands                                    | 10.00                            | 8.00         | 81%           | 81%             | 32%           | 37%          |
| 223B   | Interior Low Plateau-Transition Hills              | 1.18                             | 0.78         | 92%           | 93%             | 46%           | 59%          |
| 223D   | Interior Low Plateau-Shawnee Hills                 | 2.49                             | 1.79         | 82%           | 86%             | 37%           | 40%          |
| 223E   | Interior Low Plateau-Highland Rim                  | 4.43                             | 2.80         | 87%           | 93%             | 47%           | 56%          |
| 223F   | Interior Low Plateau-Bluegrass                     | 1.20                             | 0.35         | 80%           | 91%             | 57%           | 66%          |
| 223G   | Central Till Plains-Oak Hickory                    | 0.81                             | 0.51         | 93%           | 99%             | 58%           | 70%          |


|        |                                                |      | 5             | eration<br>orestland | Saplings      | absent       | Seedlings absent |              |
|--------|------------------------------------------------|------|---------------|----------------------|---------------|--------------|------------------|--------------|
| SCT_CD | Section Name                                   |      | Upland<br>oak | White<br>oak         | Upland<br>oak | White<br>oak | Upland<br>oak    | White<br>oak |
|        |                                                |      | acres (r      | nillions)            |               | % spe        | cies total       |              |
| 231A   | Southern Appalachian Piedmont                  |      | 5.98          | 4.21                 | 76%           | 83%          | 52%              | 53%          |
| 231B   | Coastal Plains-Middle                          | · ·  | 4.57          | 2.98                 | 73%           | 74%          | 54%              | 57%          |
| 231C   | Southern Cumberland Plateau                    |      | 1.86          | 1.32                 | 83%           | 80%          | 56%              | 60%          |
| 231D   | Southern Ridge and Valley                      |      | 1.69          | 1.03                 | 76%           | 82%          | 37%              | 58%          |
| 231E   | Mid Coastal Plains-Western                     |      | 3.67          | 2.10                 | 70%           | 76%          | 59%              | 72%          |
| 231G   | Arkansas Valley                                |      | 1.17          | 0.41                 | 74%           | 72%          | 28%              | 42%          |
| 231H   | Coastal Plains-Loess                           |      | 3.66          | 2.32                 | 78%           | 74%          | 56%              | 58%          |
| 2311   | Central Appalachian Piedmont                   |      | 6.43          | 5.19                 | 77%           | 82%          | 49%              | 44%          |
| 232A   | Northern Atlantic Coastal Plain                |      | 0.90          | 0.64                 | 88%           | 89%          | 85%              | 85%          |
| 232B   | Gulf Coastal Plains and Flatwoods              |      | 4.21          | 1.66                 | 75%           | 80%          | 63%              | 76%          |
| 232C   | Atlantic Coastal Flatwoods                     |      | 0.99          | 0.42                 | 84%           | 85%          | 80%              | 82%          |
| 232F   | Coastal Plains and Flatwoods-Western Gulf      |      | 1.49          | 0.76                 | 73%           | 78%          | 57%              | 70%          |
| 232H   | Middle Atlantic Coastal Plains and Flatwoods   |      | 2.24          | 1.67                 | 85%           | 87%          | 75%              | 69%          |
| 2321   | Northern Atlantic Coastal Flatwoods            |      | 0.41          | 0.24                 | 81%           | 77%          | 79%              | 83%          |
| 232J   | Southern Atlantic Coastal Plains and Flatwoods |      | 2.22          | 0.72                 | 69%           | 84%          | 59%              | 66%          |
| 232L   | Gulf Coastal Lowlands                          |      | 0.15          | 0.06                 | 86%           | 84%          | 96%              | 96%          |
| 234A   | Southern Mississippi Alluvial Plain            |      | 0.20          | 0.10                 | 84%           | 88%          | 66%              | 72%          |
| 234D   | White and Black River Alluvial Plains          |      | 0.40          | 0.25                 | 76%           | 74%          | 39%              | 49%          |
| 234E   | Arkansas Alluvial Plains                       |      | 0.31          | 0.16                 | 78%           | 90%          | 70%              | 66%          |
| 251C   | Central Dissected Till Plains                  |      | 2.39          | 1.43                 | 93%           | 95%          | 70%              | 63%          |
| 251D   | Central Till Plains and Grand Prairies         |      | 0.33          | 0.23                 | 87%           | 94%          | 71%              | 78%          |
| 251E   | Osage Plains                                   | ·    | 0.35          | 0.06                 | 92%           | 83%          | 42%              | 19%          |
| M211B  | New England Piedmont                           |      | 1.48          | 0.19                 | 89%           | 95%          | 71%              | 82%          |
| M221A  | Northern Ridge and Valley                      |      | 7.20          | 3.68                 | 89%           | 94%          | 64%              | 73%          |
| M221B  | Allegheny Mountains                            |      | 2.95          | 1.32                 | 93%           | 96%          | 62%              | 75%          |
| M221C  | Northern Cumberland Mountains                  |      | 4.60          | 2.48                 | 88%           | 95%          | 42%              | 68%          |
| M221D  | Blue Ridge Mountains                           |      | 6.65          | 3.19                 | 87%           | 94%          | 50%              | 73%          |
| M223A  | Boston Mountains                               |      | 2.10          | 1.72                 | 80%           | 90%          | 29%              | 53%          |
| M231A  | Ouachita Mountains                             |      | 2.96          | 2.01                 | 70%           | 78%          | 28%              | 49%          |
|        | T                                              | otal | 131.74        | 77.65                | 83%           | 83%          | 54%              | 52%          |

### TASK 6: INVESTIGATE EFFECTS OF PLAUSIBLY INFLUENTIAL FACTORS

### SITE PRODUCTIVITY

Upland oak seedling abundance showed a general decreasing pattern with increasing site productivity (Figure 43). All upland oak seedlings combined averaged about 500 seedlings per acre on plots with the poorest site quality and less than half that on sites with the highest productivity.

While the pattern of decreasing seedling abundance with increasing site productivcity was apparent when all upland oak species were combined, for individual species the relationship was not always strong or even apparent. For example, southern red oak exhibited a slight increase in seedling abundance with increasing site productivity. For white oak, this metric of site productivity appeared to have little influence on seedling abundance.



white and upland oaks on regeneration eligible upland oak forestland

Figure 43. Upland oak seedling abundance by species and site productivity class, trees per acre (dbh < 1 in.; height  $\geq$  12 in.), eastern US regeneration eligible upland oak forestland, 2017. Upland oak panel combines all eight species. Errorbars depict sampling error ( $\approx$  68% confidence or 1 standard deviation). Site productivity classes correspond approximately to white oak site index values of 35, 55, 65, 70, 80, 100, and 110 ft. at a 50 year base age. Physiographic classes provide additional insight into the relationship between site and regeneration potential for upland oaks by attempting to capture the general effect of land form, topographical position, and soil on moisture available to trees. We found that drier sites generally had greater upland oak seedling abundance than those with greater moisture availability (Figure 44). This pattern was also evident for white oak and most other upland oak species, with some species showing a propensity for a particular physiographic class along with a xeric-mesic decreasing gradient. For example, black oak seedling abundance tended to be higher on more xeric sites, but particularly high on deep sands.

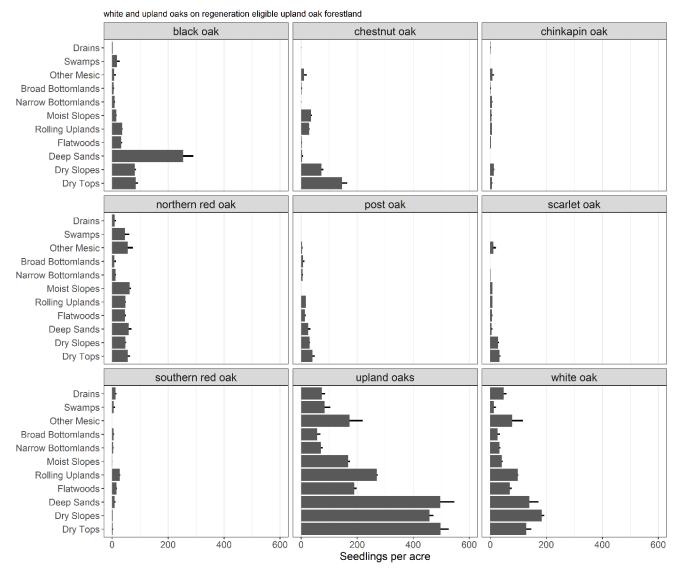



Figure 44. Upland oak seedling abundance by species and physiogrpahic class, trees per acre (dbh < 1 in.; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Upland oak panel combines all eight upland oak species. Errorbars depict sampling error and represent (≈ 68% confidence or 1 standard deviation).

#### OVERSTORY DENSITY/COMPOSITION

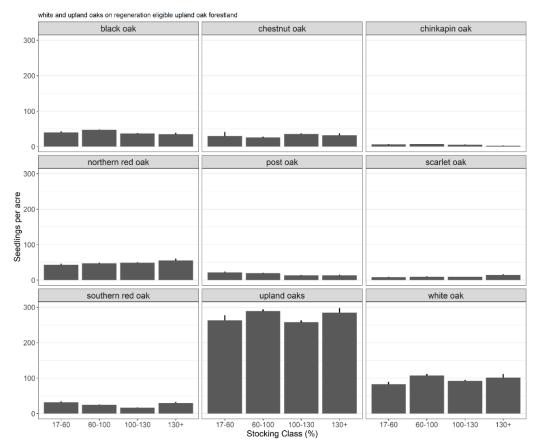



Figure 45. Upland oak seedling abundance by species and stocking class, trees per acre (dbh < 1 in.; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Upland oak panel combines all eight upland oak species. Errorbars depict sampling error and represent (≈ 68% confidence or 1 standard deviation).

Surprisingly, there was not clear evidence that stocking/density influenced seedling abundance with the metric used in this analysis (Figure 45). However, forest composition did appear to influence upland oak seedling abundance and white oak individually. Among forest types with at least 20 regeneration eligible upland oak plots, white oak seedling abundance was greatest in the white oak forest type (504), but also notably higher in many forest types that had major pine components (Figure 46), especially shortleaf or Virginia pines (162,163,404,405). In fact, white oak seedling abundance was higher in those forest types than in all oak/hickory forest types except for the white oak type (Table 7).

For all upland oak species combined, the pattern of increased abundance under canopies with heavy conifer components such as shortleaf and Virginia pines was perhaps more robust as white, red, and jack pines along with eastern redcedar all showed relatively higher upland oak seedling abundance than most other forest types (Figure 47). Only the post oak-blackjack oak, chestnut oak, and white oak forest types within the oak/hickory forest type group exhibited comparable upland oak seedling abundances.

white oak

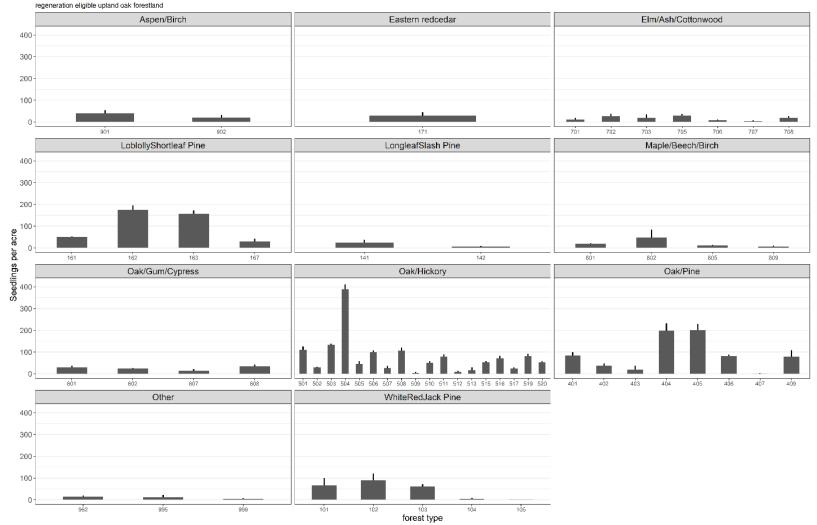
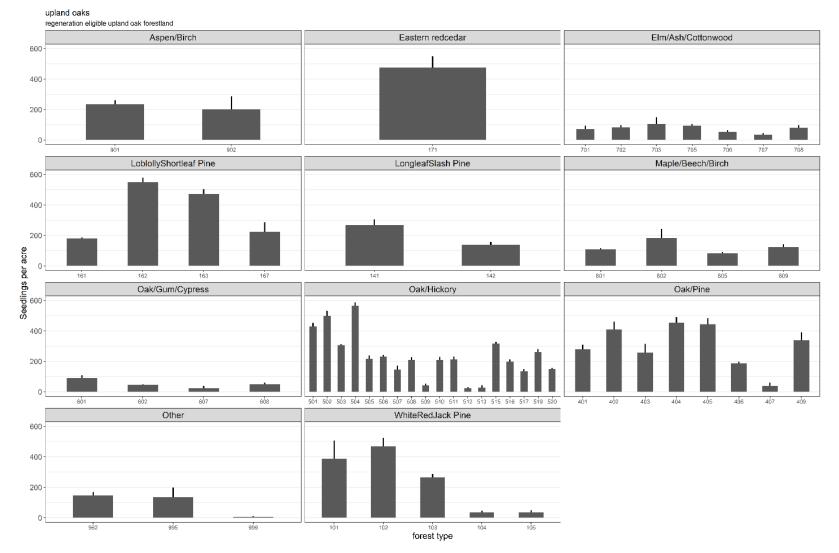
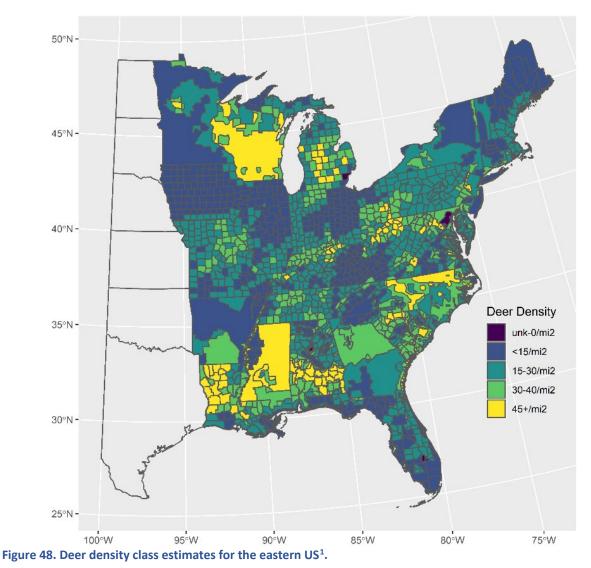


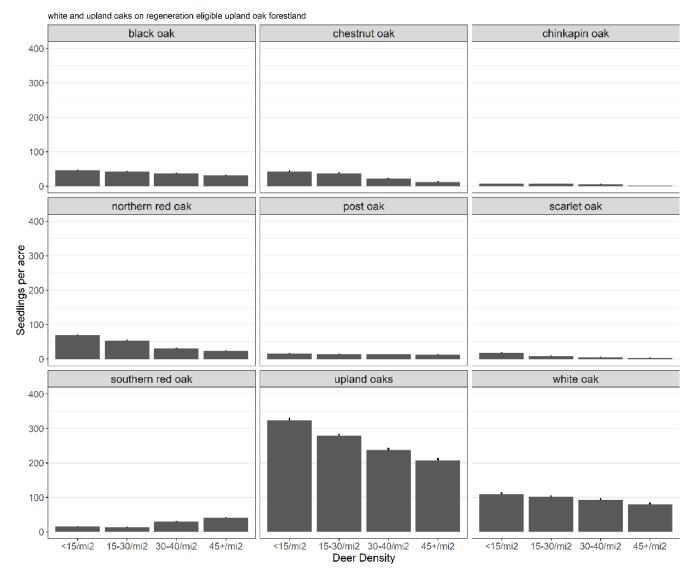

Figure 46. White oak seedling abundance by forest type, trees per acre (dbh < 1 in.; height  $\geq$  12 in.), eastern US regeneration eligible upland oak forestland, 2017. Panels depict forest types within the same forest type group, a higher level classification. Corresponding forest type names can be found in Table 7, e.g., type 504 = White oak. Errorbars depict sampling error and represent ( $\approx$  68% confidence or 1 standard deviation).





Figure 47. Upland oak seedling abundance by forest type, trees per acre (dbh < 1 in.; height  $\geq$  12 in.), eastern US regeneration eligible upland oak forestland, 2017. Panels depict forest types within the same forest type group, a higher level classification. Corresponding forest type names can be found in Table 7, e.g., type 504 = White oak. Errorbars depict sampling error and represent ( $\approx$  68% confidence or 1 standard deviation).

|                         |                      | FORTYPCD Forest type                |      | aks      | White   | oak |
|-------------------------|----------------------|-------------------------------------|------|----------|---------|-----|
| Forest type group       | FORTYPCD Forest type |                                     | TPA  | SE       | TPA     | SE  |
|                         |                      |                                     | seed | llings p | er acre |     |
| White/Red/Jack Pine     | 101                  | Jack pine                           | 322  | 116      | 65      | 34  |
| White/Red/Jack Pine     | 102                  | Red pine                            | 380  | 44       | 89      | 33  |
| White/Red/Jack Pine     | 103                  | E. white pine                       | 204  | 21       | 61      | 10  |
| White/Red/Jack Pine     | 104                  | E. white pine-E. hemlock            | 31   | 10       | 5       | 3   |
| White/Red/Jack Pine     | 105                  | E. hemlock                          | 35   | 13       | 1       | 1   |
| Longleaf/Slash Pine     | 141                  | Longleaf pine                       | 246  | 33       | 23      | 15  |
| Longleaf/Slash Pine     | 142                  | Slash pine                          | 131  | 20       | 6       | 2   |
| Loblolly/Shortleaf Pine | 161                  | Loblolly pine                       | 131  | 4        | 49      | 3   |
| Loblolly/Shortleaf Pine | 162                  | Shortleaf pine                      | 375  | 22       | 176     | 20  |
| Loblolly/Shortleaf Pine | 163                  | Virginia pine                       | 316  | 28       | 156     | 16  |
| Loblolly/Shortleaf Pine | 167                  | Pitch pine                          | 192  | 62       | 30      | 13  |
| Loblolly/Shortleaf Pine | 168                  | Spruce pine                         | 17   | 16       | 14      | 13  |
| Other E. Softwoods      | 171                  | E. redcedar                         | 446  | 73       | 29      | 17  |
| Exotic softwoods        | 381                  | Scotch pine                         | 349  | 133      | 26      | 20  |
| Oak-Pine                | 401                  | E. white pine-N. red oak- white ash | 194  | 26       | 85      | 15  |
| Oak-Pine                | 402                  | E. redcedar-hardwood                | 372  | 51       | 36      | 11  |
| Oak-Pine                | 403                  | Longleaf pine-oak                   | 240  | 53       | 19      | 17  |
| Oak-Pine                | 404                  | Shortleaf pine-oak                  | 254  | 18       | 198     | 34  |
| Oak-Pine                | 405                  | Virginia pine-S. red oak            | 243  | 28       | 201     | 27  |
| Oak-Pine                | 406                  | Loblolly pine-hardwood              | 106  | 7        | 80      | 7   |
| Oak-Pine                | 407                  | Slash pine-hardwood                 | 37   | 23       | 2       | 2   |
| Oak-Pine                | 409                  | Other pine-hardwood                 | 258  | 45       | 80      | 29  |
| Oak-Hickory             | 501                  | Post/blackjack oak                  | 319  | 16       | 111     | 16  |
| Oak-Hickory             | 502                  | Chestnut oak                        | 469  | 34       | 29      | 4   |
| Oak-Hickory             | 503                  | White/red oak-hickory               | 174  | 4        | 134     | 4   |
| Oak-Hickory             | 504                  | White oak                           | 175  | 7        | 389     | 23  |
| Oak-Hickory             | 505                  | N. red oak                          | 172  | 15       | 45      | 13  |
| Oak-Hickory             | 506                  | Tuliptree-white/N. red oak          | 132  | 8        | 99      | 7   |
| Oak-Hickory             | 507                  | Sassafras-persimmon                 | 121  | 22       | 26      | 11  |
| Oak-Hickory             | 508                  | Sweetgum-tuliptree                  | 105  | 8        | 106     | 15  |
| Oak-Hickory             | 509                  | Bur oak                             | 39   | 11       | 4       | 4   |
| Oak-Hickory             | 510                  | Scarlet oak                         | 159  | 19       | 50      | 9   |
| Oak-Hickory             | 511                  | Tuliptree                           | 133  | 14       | 79      | 11  |
| Oak-Hickory             | 512                  | Black walnut                        | 15   | 6        | 8       | 5   |

Table 7. White and upland oak seedling abundance by forest type, trees per acre, eastern US regeneration eligible upland oak forestland, 2017. SE indicates sampling error (≈ 68% confidence or 1 standard deviation).


|                    | FORTVRCD |                                 | Upland o | aks | White oak |    |
|--------------------|----------|---------------------------------|----------|-----|-----------|----|
| Forest type group  | FORTYPCD | Forest type                     | TPA S    |     | TPA       | SE |
| Oak-Hickory        | 513      | Black locust                    | 13       | 7   | 16        | 14 |
| Oak-Hickory        | 515      | Chestnut/black/scarlet oak      | 262      | 13  | 53        | 5  |
| Oak-Hickory        | 516      | Cherry-white ash-tuliptree      | 127      | 10  | 71        | 11 |
| Oak-Hickory        | 517      | Elm-ash-black locust            | 112      | 15  | 23        | 5  |
| Oak-Hickory        | 519      | Red maple-oak                   | 180      | 16  | 81        | 12 |
| Oak-Hickory        | 520      | Mixed upland hardwoods          | 98       | 5   | 53        | 5  |
| Oak-Gum-Cypress    | 601      | Swamp chestnut/cherrybark oak   | 62       | 13  | 30        | 9  |
| Oak-Gum-Cypress    | 602      | Sweetgum-Nuttall/willow oak     | 21       | 4   | 24        | 4  |
| Oak-Gum-Cypress    | 607      | Baldcypress-water tupelo        | 10       | 10  | 15        | 8  |
| Oak-Gum-Cypress    | 608      | Sweetbay-swamp tupelo-red maple | 15       | 5   | 34        | 10 |
| Elm-Ash-Cottonwood | 701      | Black ash-A. elm-red maple      | 59       | 22  | 12        | 6  |
| Elm-Ash-Cottonwood | 702      | River birch-sycamore            | 54       | 10  | 28        | 9  |
| Elm-Ash-Cottonwood | 703      | Cottonwood                      | 85       | 41  | 18        | 17 |
| Elm-Ash-Cottonwood | 705      | Sycamore-pecan-A. elm           | 64       | 10  | 30        | 8  |
| Elm-Ash-Cottonwood | 706      | Sugar/hackberry-elm-green ash   | 47       | 11  | 7         | 3  |
| Elm-Ash-Cottonwood | 707      | Silver maple-A. elm             | 30       | 10  | 4         | 4  |
| Elm-Ash-Cottonwood | 708      | Red maple-lowland               | 62       | 14  | 19        | 8  |
| Maple/Beech/Birch  | 801      | Sugar maple-beech-yellow birch  | 88       | 8   | 19        | 3  |
| Maple/Beech/Birch  | 802      | Black cherry                    | 133      | 48  | 48        | 36 |
| Maple/Beech/Birch  | 805      | Hard maple-basswood             | 72       | 8   | 11        | 3  |
| Maple/Beech/Birch  | 809      | Red maple-upland                | 117      | 18  | 7         | 3  |
| Aspen/Birch        | 901      | Aspen                           | 192      | 25  | 41        | 13 |
| Aspen/Birch        | 902      | Paper birch                     | 180      | 86  | 20        | 11 |
| Other hardwoods    | 962      | Other hardwoods                 | 133      | 23  | 14        | 5  |
| Exotic Hardwoods   | 995      | Other exotic hardwoods          | 124      | 61  | 11        | 11 |
| Nonstocked         | 999      | Nonstocked                      | 2        | 2   | 4         | 3  |

#### DEER BROWSING



Deer densities varied across the upland oak range and in some cases across relatively small areas. Generally, estimates of deer density was highest in Wisconsin, parts of the mid-Atlantic region and parts of Louisiana, Mississippi, and Alabama (Figure 48). For all upland oaks combined, increasing deer density was associated with decreasing seedling abundance (Figure 49). There was some evidence that increasing deer density was associated with either lower or no change in seedling abundance across all upland oak species except southern red oak. Southern red oak showed slight increases in seedling abundance with increasing deer density. There was a noticeable influence of deer browsing on white oak seedling abundance, though perhaps not as strong between lower classes as all upland oaks combined.

<sup>&</sup>lt;sup>1</sup> Estimates from Walters et al. (2016)





#### LAND OWNERSHIP

Generally, upland oak seedlings are more abundant on US Forest Service forestland while private forestland had the least abundant seedlings. While this pattern was evident for upland oaks combined, the ownership influence did not appear to be uniform or equally strong across all species individually (Figure 50).

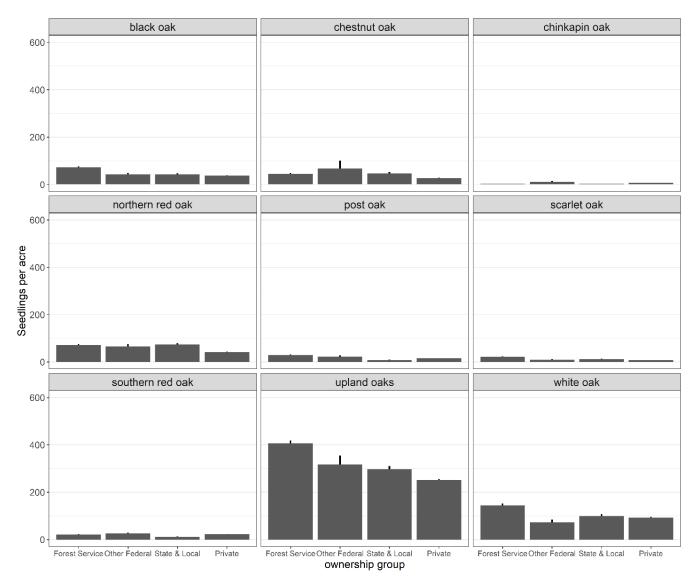
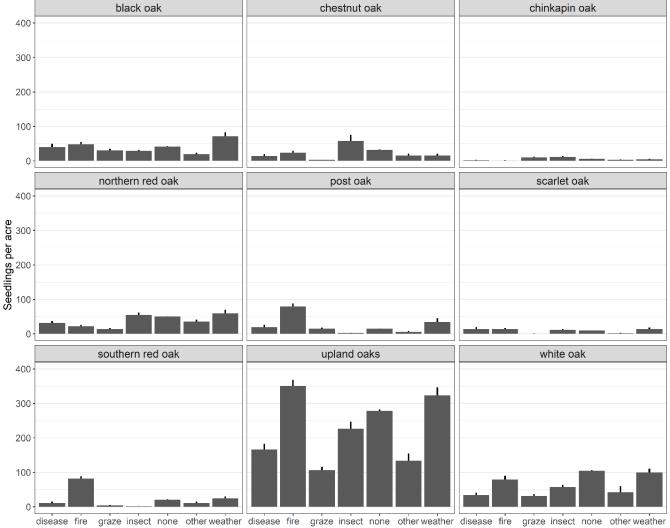




Figure 50. Upland oak seedling abundance by species and land ownership class, trees per acre (dbh < 1 in.; height  $\geq$  12 in.), eastern US regeneration eligible upland oak forestland, 2017. Upland oak panel combines all eight upland oak species. Errorbars depict sampling error ( $\approx$  68% confidence or 1 standard deviation).

#### OTHER DISTURBANCES

The occurrence and type of disturbance appears to influence average upland oak seedling abundance. On average, plots with disease-based disturbances clearly have fewer upland oak seedlings than those with no disturbance, while insect-based disturbances have perhaps slightly less abundant seedlings than undisturbed plots (Figure 51). On the other hand, fire- and weatherbased disturbances appear to have higher average oak seedling abundances than undisturbed plots. There is also some evidence that the influence of a particular type of disturbance may differ among upland oak species. For example, fire-based disturbances appear to favor post oak and southern red oak seedling abundance while other species showed little to apparent negative responses.



white and upland oaks on regeneration eligible upland oak forestland

Disturbance

Figure 51. Upland oak seedling abundance by species and disturbance type, trees per acre (dbh < 1 in.; height ≥ 12 in.), eastern US regeneration eligible upland oak forestland, 2017. Upland oak panel combines all eight upland oak species. Errorbars depict sampling error (≈ 68% confidence or 1 standard deviation).

#### INVASIVE SPECIES

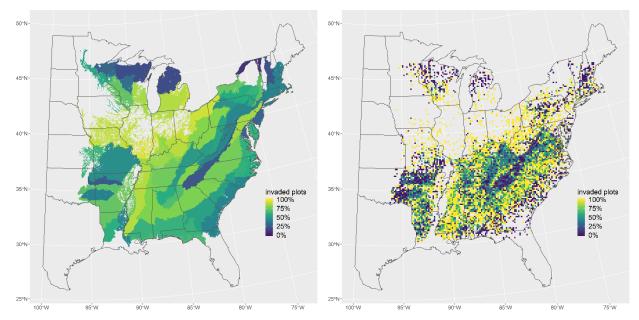



Figure 52. Invasive plant species presence by ecological section and local scale, % plots where invasive plant species were inventoried and observed, ecological section [L] and local scale [R], eastern US regeneration eligible upland oak forestland, 2017. Each local scale cell represents ≈ 48,000 acres.

The proportion of invaded plots within an ecological section ranged from 9% (211E) to 94% (223G), and averaged  $\approx$  60% across regeneration eligible upland oak forestland in ecological sections (Figure 52). Among the largest ecological sections ( $\geq$  1 million regeneration eligible upland oak acres), the Central Dissected Till Plains (251C), Interior Low Plateau-Bluegrass (223F), Coastal Plains-Loess (231H), South Central Great Lakes (222J), and Northern Appalachian Piedmont (221D) sections all have invasive plants recorded on  $\geq$  85% of inventoried plots. In contrast, the Northern Lower Peninsula (212H), New England Piedmont (M211B), Blue Ridge Mountains (M221D), and Boston Mountains (M223A) were the only ecological sections with < 25% of plots invaded. All others sections ranged from  $\approx$  40-80% invaded.

There were 64 unique invasive plant species recorded across regeneration eligible upland oak forestland, and some species are more prominent than others. The 3 most frequently occurring invasive plant species within each ecological section includes only 25 unique species, while the top 3 invasives for each section by cover includes 27 unique species (Table 8). For both frequency and cover, Japanese honeysuckle, Nepalese browntop and multiflora rose were the three most prominent species across all ecological sections, with Japanese honeysuckle clearly being the most prominent invasive species for both frequency of occurrence and cover (Figure 53).

#### Top Invasives How often a species is ranked in the top 3 for frequency or cover

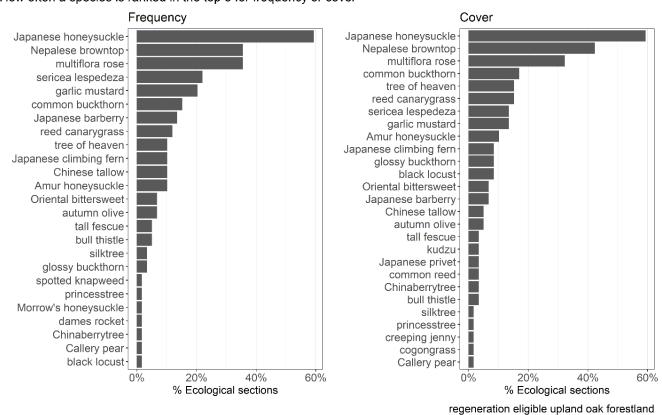



Figure 53. Prominent invasive plant species across all ecological sections by attribute, includes species most commonly ranked in the top three for frequency [L] or cover [R] at the ecological section scale, eastern US regeneration eligible upland oak forestland, 2017. Common names provided follow USDA NRCS PLANTS Database<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> https://plants.sc.egov.usda.gov/java/

# Table 8. Prominent invasive plant species across by attribute and ecological section, includes species ranked in the top three for frequency [L] or cover [R] for each section, eastern US regeneration eligible upland oak forestland, 2017. Common names provided follow USDA NRCS PLANTS Database<sup>1</sup>.

| CCT CD |                      | Top three invasive plants by attribute and ecological section |                      |                      |                      |                      |  |  |  |
|--------|----------------------|---------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|
| SCT_CD |                      | Frequency                                                     |                      |                      | Cover                |                      |  |  |  |
| 211E   | Japanese barberry    |                                                               |                      | Japanese barberry    |                      |                      |  |  |  |
| 211F   | multiflora rose      | autumn olive                                                  | Morrow's honeysuckle | multiflora rose      | autumn olive         | Nepalese browntop    |  |  |  |
| 211G   | multiflora rose      | Japanese barberry                                             | Nepalese browntop    | multiflora rose      | Nepalese browntop    | Japanese barberry    |  |  |  |
| 2111   | garlic mustard       | Japanese barberry                                             | dames rocket         | garlic mustard       | common buckthorn     | multiflora rose      |  |  |  |
| 212H   | spotted knapweed     | reed canarygrass                                              | autumn olive         | reed canarygrass     | black locust         | glossy buckthorn     |  |  |  |
| 212K   | reed canarygrass     | common buckthorn                                              | bull thistle         | glossy buckthorn     | reed canarygrass     | common buckthorn     |  |  |  |
| 212Q   | common buckthorn     | reed canarygrass                                              | bull thistle         | common buckthorn     | reed canarygrass     | bull thistle         |  |  |  |
| 212T   | bull thistle         | autumn olive                                                  | reed canarygrass     | bull thistle         | reed canarygrass     | autumn olive         |  |  |  |
| 212X   | common buckthorn     | reed canarygrass                                              | Amur honeysuckle     | common buckthorn     | reed canarygrass     | Amur honeysuckle     |  |  |  |
| 221A   | Japanese barberry    | Oriental bittersweet                                          | multiflora rose      | Japanese barberry    | glossy buckthorn     | Oriental bittersweet |  |  |  |
| 221B   | multiflora rose      | Japanese barberry                                             | Oriental bittersweet | Japanese barberry    | Oriental bittersweet | multiflora rose      |  |  |  |
| 221D   | Japanese honeysuckle | Nepalese browntop                                             | Oriental bittersweet | Nepalese browntop    | Japanese honeysuckle | Oriental bittersweet |  |  |  |
| 221E   | multiflora rose      | Japanese honeysuckle                                          | Nepalese browntop    | multiflora rose      | Nepalese browntop    | Japanese honeysuckle |  |  |  |
| 221F   | multiflora rose      | garlic mustard                                                | Japanese barberry    | multiflora rose      | garlic mustard       | Nepalese browntop    |  |  |  |
| 221H   | Japanese honeysuckle | Nepalese browntop                                             | tree of heaven       | Japanese honeysuckle | Nepalese browntop    | tree of heaven       |  |  |  |
| 221J   | Japanese honeysuckle | Nepalese browntop                                             | tree of heaven       | Japanese honeysuckle | Nepalese browntop    | tree of heaven       |  |  |  |
| 222H   | multiflora rose      | garlic mustard                                                | Amur honeysuckle     | Amur honeysuckle     | multiflora rose      | garlic mustard       |  |  |  |
| 2221   | multiflora rose      | common buckthorn                                              | garlic mustard       | common buckthorn     | multiflora rose      | creeping jenny       |  |  |  |
| 222J   | multiflora rose      | autumn olive                                                  | garlic mustard       | autumn olive         | multiflora rose      | black locust         |  |  |  |
| 222K   | common buckthorn     | garlic mustard                                                | multiflora rose      | common buckthorn     | garlic mustard       | reed canarygrass     |  |  |  |
| 222L   | common buckthorn     | multiflora rose                                               | garlic mustard       | common buckthorn     | garlic mustard       | multiflora rose      |  |  |  |
| 222M   | common buckthorn     | reed canarygrass                                              | Amur honeysuckle     | common buckthorn     | reed canarygrass     | Amur honeysuckle     |  |  |  |
| 222R   | reed canarygrass     | common buckthorn                                              | glossy buckthorn     | glossy buckthorn     | common buckthorn     | reed canarygrass     |  |  |  |
| 222U   | multiflora rose      | Japanese barberry                                             | common buckthorn     | common reed          | common buckthorn     | multiflora rose      |  |  |  |
| 223A   | multiflora rose      | Japanese honeysuckle                                          | sericea lespedeza    | Japanese honeysuckle | multiflora rose      | sericea lespedeza    |  |  |  |
| 223B   | Japanese honeysuckle | Nepalese browntop                                             | multiflora rose      | Nepalese browntop    | Japanese honeysuckle | multiflora rose      |  |  |  |
| 223D   | Japanese honeysuckle | Nepalese browntop                                             | multiflora rose      | Japanese honeysuckle | Nepalese browntop    | multiflora rose      |  |  |  |
| 223E   | Japanese honeysuckle | Nepalese browntop                                             | tree of heaven       | Japanese honeysuckle | Nepalese browntop    | tree of heaven       |  |  |  |
| 223F   | Japanese honeysuckle | garlic mustard                                                | Nepalese browntop    | Japanese honeysuckle | Nepalese browntop    | garlic mustard       |  |  |  |
| 223G   | multiflora rose      | Japanese honeysuckle                                          | Amur honeysuckle     | Japanese honeysuckle | Amur honeysuckle     | multiflora rose      |  |  |  |
|        |                      |                                                               |                      |                      |                      |                      |  |  |  |

<sup>1</sup> https://plants.sc.egov.usda.gov/java/

| SCT_CD | Top three invasive plants by attribute and ecological section |                        |                        |                        |                        |                        |  |  |  |
|--------|---------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|--|--|
| 301_00 |                                                               | Frequency              |                        |                        | Cover                  |                        |  |  |  |
| 231A   | Japanese honeysuckle                                          | sericea lespedeza      | Nepalese browntop      | Japanese honeysuckle   | Nepalese browntop      | sericea lespedeza      |  |  |  |
| 231B   | Japanese honeysuckle                                          | sericea lespedeza      | Japanese climbing fern | Japanese honeysuckle   | Nepalese browntop      | sericea lespedeza      |  |  |  |
| 231C   | Japanese honeysuckle                                          | Nepalese browntop      | silktree               | Japanese honeysuckle   | Nepalese browntop      | sericea lespedeza      |  |  |  |
| 231D   | Japanese honeysuckle                                          | Nepalese browntop      | silktree               | Japanese honeysuckle   | Nepalese browntop      | Japanese privet        |  |  |  |
| 231E   | Japanese honeysuckle                                          | Chinese tallow         | sericea lespedeza      | Japanese honeysuckle   | silktree               | Chinese tallow         |  |  |  |
| 231G   | Japanese honeysuckle                                          | sericea lespedeza      | tall fescue            | Japanese honeysuckle   | sericea lespedeza      | tall fescue            |  |  |  |
| 231H   | Japanese honeysuckle                                          | Japanese climbing fern | Nepalese browntop      | Japanese honeysuckle   | Nepalese browntop      | Japanese climbing fern |  |  |  |
| 2311   | Japanese honeysuckle                                          | Nepalese browntop      | tree of heaven         | Japanese honeysuckle   | Nepalese browntop      | tree of heaven         |  |  |  |
| 232A   | Japanese honeysuckle                                          | multiflora rose        | Nepalese browntop      | Japanese honeysuckle   | common reed            | black locust           |  |  |  |
| 232B   | Japanese honeysuckle                                          | Japanese climbing fern | Chinese tallow         | Japanese honeysuckle   | Japanese climbing fern | cogongrass             |  |  |  |
| 232C   | Japanese honeysuckle                                          | Chinese tallow         | sericea lespedeza      | Japanese honeysuckle   | Chinaberrytree         | Japanese privet        |  |  |  |
| 232F   | Japanese honeysuckle                                          | Japanese climbing fern | Chinese tallow         | Japanese honeysuckle   | Japanese climbing fern | Chinese tallow         |  |  |  |
| 232H   | Japanese honeysuckle                                          | Nepalese browntop      | sericea lespedeza      | Japanese honeysuckle   | Nepalese browntop      | tree of heaven         |  |  |  |
| 2321   | Japanese honeysuckle                                          | Nepalese browntop      | sericea lespedeza      | Japanese honeysuckle   | Nepalese browntop      | princesstree           |  |  |  |
| 232J   | Japanese honeysuckle                                          | sericea lespedeza      | Chinaberrytree         | Japanese honeysuckle   | kudzu                  | Chinaberrytree         |  |  |  |
| 232L   | Japanese climbing fern                                        | Chinese tallow         | Japanese honeysuckle   | Japanese climbing fern | Chinese tallow         | Japanese honeysuckle   |  |  |  |
| 234A   | Japanese honeysuckle                                          | Japanese climbing fern | Chinese tallow         | Japanese honeysuckle   | Japanese climbing fern | Nepalese browntop      |  |  |  |
| 234D   | Japanese honeysuckle                                          | sericea lespedeza      | princesstree           | Japanese honeysuckle   | Nepalese browntop      | kudzu                  |  |  |  |
| 234E   | Japanese honeysuckle                                          | Callery pear           | sericea lespedeza      | Japanese honeysuckle   | Callery pear           | sericea lespedeza      |  |  |  |
| 251C   | multiflora rose                                               | Amur honeysuckle       | garlic mustard         | multiflora rose        | Amur honeysuckle       | black locust           |  |  |  |
| 251D   | multiflora rose                                               | Amur honeysuckle       | garlic mustard         | Amur honeysuckle       | multiflora rose        | garlic mustard         |  |  |  |
| 251E   | multiflora rose                                               | Japanese honeysuckle   | garlic mustard         | multiflora rose        | Japanese honeysuckle   | garlic mustard         |  |  |  |
| M211B  | Oriental bittersweet                                          | glossy buckthorn       | Japanese barberry      | reed canarygrass       | glossy buckthorn       | Oriental bittersweet   |  |  |  |
| M221A  | Nepalese browntop                                             | Japanese honeysuckle   | garlic mustard         | Nepalese browntop      | Japanese honeysuckle   | tree of heaven         |  |  |  |
| M221B  | multiflora rose                                               | black locust           | Nepalese browntop      | Nepalese browntop      | black locust           | multiflora rose        |  |  |  |
| M221C  | Nepalese browntop                                             | Japanese honeysuckle   | tree of heaven         | Nepalese browntop      | Japanese honeysuckle   | tree of heaven         |  |  |  |
| M221D  | Nepalese browntop                                             | Japanese honeysuckle   | tree of heaven         | Nepalese browntop      | Japanese honeysuckle   | tree of heaven         |  |  |  |
| M223A  | Japanese honeysuckle                                          | sericea lespedeza      | tall fescue            | Japanese honeysuckle   | sericea lespedeza      | tree of heaven         |  |  |  |
| M231A  | Japanese honeysuckle                                          | sericea lespedeza      | tall fescue            | Japanese honeysuckle   | sericea lespedeza      | tall fescue            |  |  |  |

#### REFERENCES

- Bechtold, William A.; Patterson, Paul L.; [Editors] 2005. The enhanced forest inventory and analysis program national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. <u>https://doi.org/10.2737/SRS-GTR-80</u>
- Burns, Russell M., Barbara H. Honkala, tech. coords. 1990. Silvics of North America. Agriculture Handbook 654. 877p. <u>https://www.srs.fs.usda.gov/pubs/misc/ag\_654/table\_of\_contents.htm</u>
- Burrill, E.A., Wilson A.M., Turner, J.A., Pugh, S.A. Menlove, J., Christiansen, G., Conkling, B.L., David, W. 2018. The Forest Inventory and Analysis Database: database description and user guide version 8.0 for Phase 2. USDA Forest Service. [Available only online: http://www.fia.fs.fed.us/library/database-documentation/]. 946p.
- Gingrich, S.F. 1967. Measuring and evaluating stocking and stand density in upland hardwood forests in the Central States. For. Sci. 13(1): 38-53. <u>https://doi.org/10.1093/forestscience/13.1.38</u>
- Hijmans, R.J. (2020). raster: Geographic Data Analysis and Modeling. R package version 3.0-12. <u>https://CRAN.R-project.org/package=raster</u>
- Keyser, Chad E., comp. 2008 (revised October 2, 2019). Southern (SN) Variant Overview Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: USDA Forest Service, Forest Management Service Center. 82p. <u>https://www.fs.fed.us/fmsc/ftp/fvs/docs/overviews/FVSsn\_Overview.pdf</u>
- McNab, W.H., Cleland, D.T., Freoouf, J.A., Keys Jr, J.E., Nowacki, G.J., Carpenter, C.A. 2007. Description of ecological subregions: sections of the conterminous United States. Gen. Tech. Report WP-76B. Washington DC, USDA Forest Service. 80p. <u>https://doi.org/10.2737/WO-GTR-76B</u>
- Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 (1), 439-446, https://doi.org/10.32614/RJ-2018-009.
- Prasad, A. M., L. R. Iverson., S. Matthews., M. Peters. 2007-ongoing. A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States [database]. <u>http://www.nrs.fs.fed.us/atlas/tree</u>, Northern Research Station, USDA Forest Service, Delaware, Ohio.
- Pugh, S.A., Turner, J.A., Burrill, E.A., David, W. 2018. The Forest Inventory and Analysis Database: population estimation user guide (Edition: November, 2018). USDA Forest Service. [Available only online: <u>http://www.fia.fs.fed.us/library/database-documentation/</u>]. 166p.
- R Core Team (2019). R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>.
- Stanke, H., Finley, A. 2020. rFIA: Space-Time Estimation of Forest Variables using the FIA Database. R package version 0.2.4.
- USDA Forest Service 2019. Forest Inventory and Analysis National Core Field Guide Volume I: Field Data Collection Procedures for Phase 2 Plots. Version 9.0. October, 2019. St. Paul, MN: U.S. Department of Agriculture, Forest Service, Northern Research Station. Unpublished information on file at <u>http://www.fia.fs.fed.us/library/field-guides-methods-proc/</u>.
- USDA Forest Service 2020. Forest Inventory and Analysis Program Database, June, 2020. St. Paul, MN: U.S. Department of Agriculture, Forest Service, Northern Research Station. [Available only online: <u>https://apps.fs.usda.gov/fia/datamart/datamart.html</u>].

Walters, B.F.; Woodall, C.W.; Russell, M.B. (2016). White-tailed deer density estimates across the eastern United States, 2008. Retrieved from the Data Repository for the University of Minnesota, http://dx.doi.org/10.13020/D6G014.